Accudynetest logo

Products available online direct from the manufacturer

ACCU DYNE TEST ™ Bibliography

Provided as an information service by Diversified Enterprises.

3040 results returned
showing result page 7 of 76, ordered by

850. Briggs, D., Surface Analysis of Polymers by XPS and Static SIMS, Cambridge University Press, Apr 1998.

880. Rowlinson, J.S., Cohesion: A Scientific History of Intermolecular Forces, Cambridge University Press, Nov 2002.

1161. Parsegian, V.A., Van der Waals Forces, Cambridge University Press, Dec 2005.

129. Ghannam, M.T., and M.N. Esmail, “The effect of pre-wetting on dynamic contact angle,” Canadian J. Chemical Engineering, 70, 408-412, (1992).

A roll-coating experimental system is used to study the effect of pre-wetting on dynamic contact angles, the interfacial displacement depth, and the associated phenomenon of air entrainment. The system consists of a roll, which is horizontally rotating in a liquid pool. The dynamic contact angle is recorded by a macrophotography system. The test liquids are glycerol solutions with viscosities in the range 104 < μ < 748 mPa · s. The value of (μV/ρg)0.5 is taken as the characteristic length to be used in the dimensionless relationships which correlate experimental measurements. The effect of base layer entry angle into the liquid pool on the dynamic contact angles and other flow parameters is studied. Comparison is made with measurements in dry tape-coating and other pre-wet roll–coating systems.

354. Stradal, M., and D.A.I. Goring, “Corona-induced autohesion of polyethylene: Dependence of bonding on frequency and power consumption in various gases,” Canadian J. Chemical Engineering, 53, 427-430, (1975).

The autohesion of polyethylene sheets was markedly improved by corona discharge treatments in oxygen, nitrogen, argon and helium. Equal bond strength was produced by an equal number of discharge cycles regardless of the time or frequency of application. At a given operating voltage the power consumed in a discharge rather than the chemical nature of a gas proved to be a factor controlling the enhancement of autohesion. The detrimental effect of the oxidation upon autohesion was noted after a prolonged treatment in an oxygen corona.

1311. Kwok, D.Y., and A.W. Neumann, “A simple experimental test of the Lifshitz-van der Waals/acid-bsae approach to determine interfacial tensions,” Canadian J. Chemical Engineering, 74, 551-553, (1996).

A study was conducted which showed that the Lifshitz-van der Waals / acid-base approach yielded liquid-liquid interfacial tensions which were incompatible with experimental results. The approach allowed correct prediction of interfacial tensions for only four completely miscible liquid/liquid pairs. This result calls into question traditionally held interfacial tension theories, and points up the need for caution in the application to solid/liquid contact angle systems if an approach should fail the liquid/liquid test.

2817. Dilsiz, N., and J.P. Wightman, “Surface analysis of unsized and sized carbon fibers,” Carbon, 37, 1105-1114, (1999).

Atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and contact angle analyses were performed on unsized and sized carbon fibers to better understand the mechanism of adhesion in carbon fiber/polymer matrix composites. AFM images and surface roughness analyses showed that the sizing changes the surface topography on a microscopic scale. The total surface energy decreased from 70 mJ/m2 for unsized fiber to 54 mJ/m2 for Ultem® sized and to 36 mJ/m2 for PTPO sized fibers. The percentage of functional groups on the sized fibers decreased slightly compared to the unsized fibers. The surface functional groups and surface energies of fibers are critical properties in predicting fiber/matrix adhesion. Angle dependent XPS, voltage contrast XPS, and perimeter measurements revealed that the thickness of the poly(thioarylene phosphine oxide) (PTPO) sizing on the carbon fiber surface was greater than for the poly(etherimide) (Ultem®) sizing.

726. Blake, T.D., and K.J. Ruschak, “Wetting: static and dynamic contact lines,” in Liquid Film Coating: Scientific Principles and Their Technological Implications, Kistler, S.F., and P.M. Schweizer, eds., 63-98, Chapman & Hall, Jan 1997.

Wetting is basic to coating. Initially air contacts the solid, and during coating the liquid displaces the air from the moving solid surface so that none is visible in the coated film. Thus, coating is a process of dynamic wetting. For uniform coating, the wetting line must remain straight and advance steadily. At sufficiently high speeds, however, the wetting line becomes segmented and unsteady as a thin air film forms between the solid and liquid. The air film disrupts the uniformity of the coated film, and often air bubbles appear in the coating. Dynamic wetting failure limits coating speed.

727. Tricot, Y.-M., “Surfactants: static and dynamic surface tension,” in Liquid Film Coating: Scientific Principles and Their Technological Implications, Kistler, S.F., and P.M. Schweizer, eds., 99-136, Chapman & Hall, Jan 1997.

Surfactants — an acronym for surface-active agents — are versatile and ubiquitous chemicals. They are found in industrial areas related to detergents (Hancock 1984; Thayer 1993), pharmaceuticals (Tadros 1984; Attwood and Florence 1983), cosmetics (Ainsworth 1993), paints (Nylen and Sunderland 1965), pesticides (Wada et al. 1983; Tann, Berger and Berger 1992) and oil recovery (Neustalder 1984), to mention a few. Mother Nature used them, long before humans, as major building blocks of biological membranes, taking advantage of the so-called hydrophobic effect (Tanford 1980). This chapter focuses on applications of surfactants in liquid film coating processes, and in particular in coatings involving aqueous solutions, as encountered in the photographic industry.

411. no author cited, “Technique for seeing polymer surface is validated,” Chemical & Engineering News, 78, 45, (Nov 2000).

380. Weber, J.H., “Predict surface tension of binary liquids,” Chemical Engineering, 92, 87-90, (Oct 1985).

373. van Oss, C.J., M.K. Chaudhury, and R.J. Good, “Interfacial Lifschitz-van der Waals and polar interactions in macroscopic systems,” Chemical Review, 88, 927-941, (1988).

apolar interactions in macroscopic systems, cell separation methods. the nature of the interaction between antigens and antibodies. and physicochemical and immunochemical cell surface characterization.

932. Bradley, A., and J.D. Fales, “Prospects for industrial applications of electrical discharge,” Chemical Technology, 1, 232-237, (Apr 1971).

2480. Mausar, J., “Surface energy and surface tension: Measurements key to ink, adhesive, and coating wet out,” Chemsultants International, Oct 2010.

908. no author cited, “Surface tension of inks and paper; project 2695-26,” Chesapeake Packaging Co., 1997.

2134. no author cited, “The gentle art of pretreating,” Coating, 20-24, (Jan 2007).

1577. Palmers, J., “Roll-to-roll plasma treater to improve bonding and modify surfaces,” Coating Magazine, 469, (Dec 2000).

2996. Abdel-Fateh, E., and M. Alshaer, “Polyimide surface modification using He-H2O atmospheric pressure plasma jet-discharge power effect,” Coatings, 10, (Jul 2020).

The atmospheric pressure He- H 2 O plasma jet has been analyzed and its effects on the Kapton polyimide surface have been investigated in terms of discharge power effect. The polyimide surfaces before and after plasma treatment were characterized using atomic force microscopy (AFM), X-ray photoelectrons spectroscopy (XPS) and contact angle. The results showed that, increasing the discharge power induces remarkable changes on the emission intensity, rotational and vibrational temperatures of He- H 2 O plasma jet. At the low discharge power ≤5.2 W, the contact angle analysis of the polyimide surface remarkably decrease owing to the abundant hydrophilic polar C=O and N–C=O groups as well as increase of surface roughness. Yet, plasma treatment at high discharge power ≥5.2 W results in a slight decrease of the surface wettability together with a reduction in the surface roughness and polar groups concentrations.

2633. Mills, P., and A. Stecher, “Overcoming adhesion failures of UV coatings with atmospheric plasma treatment,” Coatings World, 20, 68-71, (Oct 2015).

2651. Mania, D.M., “Is there a correlation between contact angle and stain repellency?,” Coatings World, 21, 99-105, (Jul 2016).

2739. Banton, R., B. Casey, C. Maus, and M. Carroll, “Adhesion promotion for UV coatings and inks onto difficult plastic substrates,” Coatings World, 23, 78-84, (Jul 2018).

2646. Schoff, C.K., “Application defects,” CoatingsTech, 13, 32-39, (Apr 2016).

13. Banerji, B.K., “Physical significance of contact angles,” Colloid and Polymer Science, 259, 391-394, (1981).

The physical significance of contact angles has been interpreted on the basis of a model derived from known surface energy relationships. The degrees of non-spreading and spreading have been expressed in terms of the magnitude of contact angles. On the basis of the physical picture, hysteresis of contact angle has been calculated from the experimental values of equilibrium contact angle and surface tension of the liquid. It has been suggested that it is not necessary to assume that hysteresis of contact angles is due to surface roughness of solids. The picture also explains why apparent contact angle on a non-flat solid surface is more than that on a flat solid.

227. Lunkenheimer, K., and K.D. Wandtke, “Determination of the surface tension of surfactant solutions applying the method of Lecomte de Nouy (ring tensiometer),” Colloid and Polymer Science, 259, 354-366, (1981).

Starting from a comparative assessment of the outstanding works on the ring method (du Noüy) for the determination of the surface tension of liquids and its solutions it is shown that the application of this method to surfactant solutions can lead to substantial errors if one follows conventional conditions. These errors are mainly connected with so far unknown phenomena occurring during the raising of the ring and concerning the influence of the hydrophilic vessel wall above the solution level and the stretching of the solution surface. This is demonstrated quantitatively with surfactant solutions of different kind and concentration. These effects can be explained theoretically very simply by introducing certain assumptions on the behaviour of a surfactant adsorption layer on the inner vessel wall. Conditions leading to the elimination of these errors are given, thus enabling the application of the ring method to the determination of the surface tension of surfactant solutions.

286. Pennings, J.F.M., and B. Bosman, “Relaxation of the surface energy of solid polymers,” Colloid and Polymer Science, 257, 720-724, (1979).

The surface energy of a polymer can be increased by compression moulding against a metal substrate. After removal of the substrate relaxation to the equilibrium value sets in. We determined the rate of polymer surface energy relaxation as a function of temperature. For a vinyl chloride-vinyl acetate copolymer we determined an activation energy of the relaxation process that could be correlated to segmental motions in this polymer. For a plasticized polyvinylchloride we found a lower activation energy and a larger rate of relaxation, which is the result of the action of plasticizers on segmental motions. In the case of polyethylene the results indicate segmental motions in amorphous regions in the polymer. With polyethylene the activation energy drops when nearing the melt temperature. The movements of molecular segments correspond to a desorption process at the polymer surface, after removal of the substrate. This agrees with the adsorption during compression moulding, as repotted in earlier work.

1302. Li, D., and A.W. Neumann, “Surface heterogeneity and contact angle hysteresis,” Colloid and Polymer Science, 270, 495-504, (1992).

The effect of surface heterogeneity on contact angle hysteresis is studied by using the model of Neumann and Good of a vertical plate with horizontal heterogeneous strips. The results of this study explain well known, but not understood patterns of contact angle behaviour: On the one hand, the advancing contact angle on a carefully prepared solid surface is generally reproducible; on the other hand, even a very small amount of surface heterogeneity may cause the receding contact angle to be less reproducible and to depend on several non-thermodynamic factors.

1307. Moy, E., F.Y.H. Lin, Z. Policova, and A.W. Neumann, “Contact angle studies of the surface properties of covalently bonded poly-L-lysine to surfaces treated by glow-discharge,” Colloid and Polymer Science, 272, 1245-1251, (1994).

Contact angle data, measured by using a sessile drop arrangement in conjunction with Axisymmetric Drop Shape Analysis-contact Diameter (ADSA-CD), were used to quantify the effects of ammonia gas plasma treatment on the surface properties of previously untreated polystyrene surfaces. The surface tension of treated polystyrene samples is considerably higher than that of untreated samples. The increase in surface tension following plasma treatment is attributed to the addition of amine groups to the surface.

Next, conformational changes following the attachment of poly-L-lysine to the untreated samples by simple adsorption and plasma treated samples by covalent bonding were investigated. Surface tension values obtained from contact angle data indicate that conformational changes to poly-L-lysine occur in both cases, because these values are lower than the surface tension of poly-L-lysine in solution. However, contact angle data show that covalently bonded poly-L-lysine undergoes less conformational changes than simply adsorbed poly-L-lysine.

1316. Kwok, D.Y., A. Leung, A. Li, C.N.C. Lam, R. Wu, and A.W. Neumann, “Low-rate dynamic contact angles on poly(n-butyl methacrylate) and the determination of solid surface tensions,” Colloid and Polymer Science, 276, 459-469, (1998).

Low-rate dynamic contact angles of 22 liquids on a poly(n-butyl methacrylate) (PnBMA) polymer are measured by an automated axisymmetric drop shape analysis-profile (ADSA-P). It is found that 16 liquids yielded non-constant contact angles, and/or dissolved the polymer on contact. From the experimental contact angles of the remaining 6 liquids, it is found that the liquid–vapor surface tension times cosine of the contact angle changes smoothly with the liquid–vapor surface tension, i.e. γlv cos θ depends only on γlv for a given solid surface (or solid surface tension). This contact angle pattern is in harmony with those from other inert and non-inert (polar and non-polar) surfaces [34–37, 45–47]. The solid–vapor surface tension calculated from the equation-of-state approach for solid-liquid interfacial tensions [14] is found to be 28.8 mJ/m2, with a 95% confidence limit of ±0.5 mJ/m2, from the experimental contact angles of the 6 liquids.

1829. Tagawa, M., K. Gotoh, A. Yasukawa, and M. Ikuta, “Estimation of surface free energies and Hamaker constants for fibrous solids by wetting force measurements,” Colloid and Polymer Science, 268, 589-594, (Jun 1990).

Wetting force at three-phase line was measured by the Wilhelmy technique using fibrous solids/liquid/liquid systems. Advancing and receding contact angles were calculated from the wetting forces during fiber immersion and emersion. The obtained results showed that contact angle hysteresis was due to the heterogeneity of the fiber surfaces. The dispersive and polar components of surface free energies of the fibers were determined from the advancing and receding contact angles, respectively. The Hamaker constants of the fibers were estimated from the dispersive components of their surface free energies.

1830. Tagawa, M., N. Ohmae, M. Umeno, K. Gotoh, and A. Yasukawa, “Contact angle hysteresis in carbon fibers studied by wetting force measurements,” Colloid and Polymer Science, 267, 702-706, (Aug 1989).

The surface free energy of polyacrylonitrile carbon fibers was investigated by using the Wilhelmy technique. The difference in surface free energy between immersion and emersion was observed for the carbon fiber pyrolyzed at 2500 °C.

In contrast, the hysteresis disappeared with repyrolyzation of the carbon fibers at 3000 °C. Auger electron spectroscopic analysis indicated that the surface of the latter carbon fiber (repyrolyzed at 3000 °C) consisted of the basal planes of graphite. Rough surface topography of the carbon fiber repyrolyzed at 3000 °C, as observed by scanning electron microscope, did not affect the hysteresis. Therefore, the contact angle hysteresis was attributed to the chemical adsorbants on the activation sites of the fiber surfaces, as detected by Auger electron spectroscopy.

2047. Tsuchida, M., and Z. Osawa, “Effect of ageing atmospheres on the changes in surface free energies of oxygen plasma-treated polyethylene films,” Colloid and Polymer Science, 272, 770-776, (Jul 1994).

The changes in the surface properties of oxygen plasma-treated polyethylene films during ageing in various atmospheres (water, dry nitrogen gas, and hexane) were studied from the viewpoint of the interaction of the surface functional groups formed on the films and the ageing media. The XPS (x-ray photoelectron spectroscopy) and the SSIMS (static secondary ion mass spectrometry) spectra indicated the formation of polar groups containing oxygen such as C=O on the film surface. The changes in the critical surface tension (γC) of the film with ageing time were largely affected by the ageing atmospheres: the γC value of the film aged in water increased, and those of the films aged in nitrogen gas and hexane decreased with an increase in ageing time. These different tendencies among the ageing media could be understood reasonably with examining the surface free energy ratios (the total energy, γtotS, the dispersion force component, γdStotS, the polar component, γpStotS, the hydrogen bonding component, γhStotS) of the films. The ageing in water of which γL is large gave the films with higher γpStotS values, suggeting that the overturn and/or the orientation of the polar groups toward the water phase occurred so as to minimize the discrepancy of the surface free energy between the polymer surface and water. On the other hand, the ageing in nitrogen gas and hexane media of which γL are small gave the films with lower γpStotS and γhStotS values, suggesting the overturn and/or the orientation of the polar groups into the bulk polymer.

2512. Drnovska, L.L. Jr., V. Bursikova, J. Zemek, and A.M. Barros-Timmons, “Surface properties of polyethylene after low-temperature plasma treatment,” Colloid and Polymer Science, 281, 1025-1033, (Oct 2003).

The effect of oxygen and ammonia plasma treatments on changes of the surface properties of linear high-density polyethylene (HDPE) was studied. Surface energies of the polymer substrates were evaluated by contact angle measurements using Lifshitz-van der Waals acid-base approach. The surface energy of untreated HDPE is mainly contributed by Lifshitz-van der Waals interactions. After 5 min of plasma treatment, hydrogen bonds are formed on the surface, which is reflected in predominant acid-base interactions. The SEM results obtained demonstrate considerable changes of the surface roughness due to different types of the plasma gas used. Evolution of oxygen- or amino-containing moieties was detected by XPS and ATR FT IR. The prepared polyethylene surfaces were used as a basic support for further fabrication of novel hybrid biocomposite sandwich structures.

589. Vavruch, I., “On the relation between surface energy, internal pressure and molar volume in pure fluids,” Colloids and Surfaces, 30, 405+, (1988).

1327. Li, D., and A.W. Neumann, “Determination of line tension from the drop size dependence of contact angles,” Colloids and Surfaces, 43, 195-206, (1990).

The drop size dependence of the advancing contact angle of dodecane and ethylene glycol on carefully prepared FC-721, Zonyl FSC and DDOA surfaces has been studied by means of axisymmetric drop shape analysis. The contact angles were measured in air and were found to decrease by 3 to 5 degrees as the radius of the three-phase contact line increased from approximately 1 to 5 mm. This phenomenon is interpreted in terms of line tension by the modified Young equation. Our experimental results show that the line tensions are positive and of the order of 1 μJ m−1 for all the three solid-liquid systems in our study; these results are consistent with previous work in our laboratory. The occasionally observed phenomenon that contact angles increase as the radius of the three-phase contact line increased on less carefully prepared surfaces is ascribed to the corrugation of the three phase contact line.

1329. Moy, E., P. Cheng, Z. Policova, S. Treppo, D. Kwok, D.R. Mack, et al, “Measurement of contact angles from the maximum diameter of non wetting drops by means of a modified axisymmetric drop shape analysis,” Colloids and Surfaces, 58, 215-227, (1991).

A modified axisymmetric drop shape analysis approach, ADSA-MD (maximum diameter) was developed to measure the contact angles of non-wetting drops front top-view images of the drop. The approach numerically solves the Laplace equation of capillarity given the following input parameters: maximum diameter and volume of the drop, liquid surface tension, density difference between the two fluid phases and the gravity constant. The computed contact angles are in good agreement with those from ADSA-P, an approach which uses the profile of the drop to determine the contact angle. This new technique is particularly suited for systems where the quality of the solid substrate is poor, such as in the case of biological systems. For these situations contact angle determination from the profile is difficult, if not impossible, due to the difficulty in locating the three-phase contact line. The ADSA-MD approach was used to determine the contact angle of water sessile drops on colon sections of New zealand white rabbits.

1611. Erbil, H.Y., and R.A. Meric, “Determination of surface free energy components of polymers from contact angle data using nonlinear programming methods,” Colloids and Surfaces, 33, 85-97, (1988) (also in Interfaces in Polymer, Ceramic, and Metal Matrix Composites, H. Ishida, ed., Elsevier, 1988, p. 765-772).

2115. Busscher, H.J., A.W.J. van Pelt, P. de Boer, H.P. de Long, and J. Arends, “The effect of surface roughening of polymers on measured contact angles of liquids,” Colloids and Surfaces, 9, 319-331, (May 1984).

Equilibrium, advancing and receding contact angles for five different liquids have been determined on twelve commercial polymers after various surface roughening procedures. It was found that influences of surface roughening on contact angles disappear if the stylus surface roughness RA is < 0.1 μm. Surface roughening tends to increase observed contact angles, if the contact angle on the smooth surface is above 86°, whereas contact angles decrease if the contact angle on the smooth surface is below 60°. For contact angles on the smooth surface between 60° and 86°, surface roughening was found not to influence measured contact angles. These results show a broad similarity in the trend, predicted by the early Wenzel equation, describing the influence of surface roughness on contact angles, although of course the stylus surface roughness RA is not identical to the theoretical r-parameter in the Wenzel equation.

2283. Spelt, J.K., “Solid surface tension: The use of thermodynamic models to verify its determination from contact angles,” Colloids and Surfaces, 43, 389-411, (1990).

Many approaches have been used to infer the surface tension of solids from liquid contact angles. In most cases the different methods have not been verified by independent means because of the inherent difficulty in directly measuring a solid surface tension. This paper examines a range of diverse experiments which, together with appropriate thermodynamic models, permit such an independent verification to be made.

As part of an ongoing study, the focus has been on two methods of interpreting contact angles which often yield conflicting results; namely, the equation of state approach and the theory of surface tension components. The previous work has led to the conclusion that the latter approach is incorrect. In this paper the accuracy of these two methods is examined in a strictly empirical way through the interpretation of a wide body of experimental results. It is seen that the predictions of the equation of state approach are in much closer agreement with the various experiments than are those derived from the Fowkes equation.

1294. Kwok, D.Y., C.N.C. Lam, A. Li, A. Leung, R. Wu, E. Mok, and A.W. Neumann, “Measuring and interpreting contact angles: A complex issue,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 142, 219-235, (1998).

Low-rate dynamic contact angles of 30 liquids on a FC-725-coated wafer surface were measured by an automated axisymmetric drop shape analysis-profile (ADSA-P). Surprisingly, results indicate that FC-725 behaves differently in some respects from what one would expect for non-polar surfaces: only nine liquids yield essentially constant contact angles whereas the others show slip/stick contact angle behaviour. In the worst case, the contact angle increases from ca 50 to 160° at essentially constant three-phase contact radius. These angles should be disregarded for the interpretation in terms of surface energetics since there is no guarantee that Young's equation is applicable. If one employs a conventional goniometer-sessile drop technique, such contact angle behaviour cannot be easily seen in all cases. These results indicate that the claim from van Oss et al. [Langmuir 4 (1988) 884] that liquids with the same contact angles do not have the same surface tensions is misleading. If the meaningful contact angles are plotted as the liquid–vapour surface tension times cosine of the contact angle versus the liquid–vapour surface tension, that is, γlv cos θ versus γlv, a smooth curve emerges. Thus, intermolecular forces (or surface tension components) do not have an additional and independent effect on the contact angles, in good agreement with the results from other studies on non-polar and polar polymers.

1305. Kwok, D.Y., D. Li, and A.W. Neumann, “Fowkes' surface tension components approach revisited,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 89, 181-191, (1994).

By comparing the number of degrees of freedom obtained from the phase rule for capillary systems, the Fowkes surface tension component approach for interfacial tensions is shown to require more degrees of freedom than are available for a two-component solid—liquid—vapour system. Only in a special case has the Fowkes approach two degrees of freedom: a dispersive liquid on a dispersive solid, suggesting that there are no surface tension components. Experimental results suggest that the Fowkes component approach does not describe physical reality; only the liquid and solid surface tensions, γ1v and γsv, are operative in the two-component solid—liquid—vapour system. Generalization of the Fowkes component approach, of course, will increase the number of independent variables and hence definitely require more degrees of freedom than are available.

The number of degrees of freedom of the equation of state for interfacial tensions is shown to agree with that predicted from the phase rule for capillary systems as well as with experimental results. By using the empirical form of the equation of state, essentially constant solid tensions, γsv, are obtained from a variety of dispersive and non-dispersive liquids for three solid surfaces: fluorocarbon (FC721), Teflon (FEP) and poly(ethylene terephthalate) (PET).


<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | Next-->