Accudynetest logo

Products available online direct from the manufacturer

ACCU DYNE TEST ™ Bibliography

Provided as an information service by Diversified Enterprises.

3040 results returned
showing result page 10 of 76, ordered by
 

2630. Abbott, S., “Adhesion Apps: What is NOT important in adhesion?,” Converting Quarterly, 6, 10, (Jan 2016).

2648. Abbott, S., “Adhesion Apps: What IS important in adhesion?,” Converting Quarterly, 6, 12-13, (May 2016).

2649. Mount, E.M. III, “Substrate secrets: How do we test for invisible variations in film surface energy?,” Converting Quarterly, 6, 14-15, (May 2016).

2666. Abbott, S., “Adhesion Apps: Why does a higher level of cross-linking actually make adhesion weaker?,” Converting Quarterly, 6, 16-17, (Aug 2016).

2670. Abbott, S., “Adhesion Apps: Why is 'real' adhesion 'unknowable'?,” Converting Quarterly, 6, 12-13, (Nov 2016).

2671. Fichtner, J, T. Beck, and S. Gunther, “Surface modification of polyethylene terephthalate (PET) and oxide-coated PET for adhesion improvement,” Converting Quarterly, 6, 48-54, (Nov 2016).

2676. Blake, T.D., “An introduction to wetting and its relevance to coating,” Converting Quarterly, 7, (Jan 2017).

2688. Mount, E.M. III, “Substrate secrets: How can we optimize various substrate surfaces for proper adhesion?,” Converting Quarterly, 7, 16-17, (May 2017).

2689. Abbott, S., “Adhesion Apps: How does entanglement result in strong adhesion?,” Converting Quarterly, 7, 14-15, (May 2017).

2697. Abbott, S., “Adhesion Apps: How do we achieve strong adhesion with polymers that have to be weak?,” Converting Quarterly, 7, 14-15, (Jul 2017).

2698. Dillingham, G., “Film surface properties: Techniques for measurement and control of treatment level,” Converting Quarterly, 7, 58-64, (Jul 2017).

2699. Kumar, S., “Liquid transfer in printing processes,” Converting Quarterly, 7, 74-80, (Jul 2017).

2702. Abbott, S., “What is the real science behind PSAs and release coatings?,” Converting Quarterly, 7, 12-13, (Nov 2017).

2729. Cohen, E.D., “Coating concepts: What solution properties need to be controlled for effective web coating?,” Converting Quarterly, 8, 18-19, (Apr 2018).

2730. Cohen, E.D., “Substrate properties required for quality web-coated products,” Converting Quarterly, 8, 58-61, (Apr 2018).

2799. Mount, E.M. III, “Substrate secrets: How do we design a substrate to have enhanced surface chemistry? Part 1,” Converting Quarterly, 9, 12, (Oct 2019) (also in http://www.convertingquarterly.com/substrates/how-do-we-design-a-substrate...).

2800. Wolf, R.A., “Novel surface-treatment gap-adjustment technology automatically fits web changes,” Converting Quarterly, 9, 53-56, (201910).

2835. McKell, K., and K. Bredgaard, “Specialized plasma technology improves adhesion of water-based materials,” Converting Quarterly, 10, 47-50, (Oct 2020).

2836. Wolf, R.A., “Modifying surface properties in extrusion coating & laminating,” Converting Quarterly, 10, 52-56, (Oct 2020).

2880. Miller, M., “The effects of surface treatment at the coating-head interface,” Converting Quarterly, 11, 60-63, (Oct 2021).

2881. Plantier, M., “Surface-treating insights for the various substrates used in lithium-ion battery production,” Converting Quarterly, 11, 36-38, (Apr 2021).

2929. Lykke, K., “How proper treatment for flexible laminates helps achieve high bond strength, zero optical defects,” Converting Quarterly, 12, 64-68, (Oct 2022).

2930. Gilbertson, T., and M. Plantier, “Web-handling best practices for corona treating on R2R-converting lines: Why the web path matters,” Converting Quarterly, 12, 69-73, (Oct 2022).

3010. Davis, C., “Using excimer technology as an alternative surface treatment for highly sensitive, costly substrates,” Converting Quarterly, 13, 60-62, (Oct 2023).

1775. Gilbertson, T.J., and M. Plantier, “Blame the corona treater: The truth about watt density, dyne levels & adhesion,” Converting Solutions, 24, 22-27, (Feb 2019).

2135. no author cited, “Corona: An evolving process,” Converting Today, 19, (Apr 2007).

613. no author cited, “Ceramic coat raises corona efficiency, lowers cost,” Converting World, 6, (Mar 1991).

936. Griese, E.W. Jr., “Surface energy and surface tension,” Cork Ind., Dec 1994.

937. Griese, E.W. Jr., “Surface energy & printing success,” Cork Ind., Feb 1995.

2335. Boenig, H.V., Plasma Science and Technology, Cornell University Press, 1982.

1550. Stobbe, B.D., “Frequency effects on corona discharge treatment,” Corotec Corp., 0.

2086. Minzari, D., P. Moller, P. Kingshott, L.H. Christensen, and R. Ambat, “Surface oxide formation during corona discharge of AA 1050 aluminum surfaces,” Corrosion Science, 50, 1321-1330, (May 2008).

Atmospheric plasmas have traditionally been used as a non-chemical etching process for polymers, but the characteristics of these plasmas could very well be exploited for metals for purposes more than surface cleaning that is presently employed. This paper focuses on how the corona discharge process modifies aluminium AA 1050 surface, the oxide growth and resulting corrosion properties. The corona treatment is carried out in atmospheric air. Treated surfaces are characterized using XPS, SEM/EDS, and FIB-FESEM and results suggest that an oxide layer is grown, consisting of mixture of oxide and hydroxide. The thickness of the oxide layer extends to 150–300 nm after prolonged treatment. Potentiodynamic polarization experiments show that the corona treatment reduces anodic reactivity of the surface significantly and a moderate reduction of the cathodic reactivity.

1242. Ozdemir, M., C.U. Yurteri, and H. Sadikoglu, “Physical polymer surface modification methods and applications in food packaging polymers,” Critical Reviews in Food Science and Nutrition, 39, 457-477, (Jul 1999).

Continued innovations in the polymer industry have made polymer surface modification methods a subject of intense research. The importance and necessity of surface modification of plastics are explained, and the advantages of physical surface treatments over the less-sophisticated chemical methods are outlined. Currently available physical surface modification methods for food packaging polymers are reviewed from the food packaging perspective. These physical surface modification methods include flame, corona discharge, UV, gamma-ray, electron beam, ion beam, plasma, and laser treatments. The principle of operation of each method is briefly described, and the advantages and disadvantages of each technique are cited. The extent to which each of these methods can produce the specific modifications desired is discussed. Furthermore, the effects of each treatment on barrier, mechanical, and adhesion properties of food packaging polymers are also examined. Finally, an overview of economic aspects of sophisticated surface modification techniques, including ion beam, plasma, and laser treatments, is presented.

2866. Karbowiak, T., F. Debeaufort, and A. Voilley, “Importance of surface tension characterization for food, pharmaceutical and packaging products: A review,” Critical Reviews in Food Science and Nutrition, 46, 391-407, (2006).

This article reviews the various theoretical approaches that have been developed for determination of the surface tension of solids, and the applications to food industrial products. The surface tension of a solid is a characteristic of surface properties and interfacial interactions such as adsorption, wetting or adhesion. The knowledge of surface tension is thus of great interest for every domain involved in understanding these mechanisms, which recover a lot of industrial investigations. Indeed, it is the case for the packaging industry, the food materials science, the biomedical applications and the pharmaceutical products, cleaning, adhesive technology, painting, coating and more generally all fields in relation with wettability of their systems. There is however no direct method for measurements of surface tension of solids, except the contact angle measurements combined with an appropriate theoretical approach are indirect methods for estimation of surface tension of solids. Moreover, since the publication by Young (1805) who developed the basis of the theory of contact angle some two hundred years ago, measurements and interpretations are still discussed in scientific literature, pointing out the need to better understand the fundamental mechanisms of solid-liquid interfacial interactions. Applications of surface tension characterization in the field of food materials science are detailed, especially for packaging and coating applications, which recover different actual orientations in order to improve process and quality.

1684. Gulejova, B., M. Simor, J. Rahel, D. Kovacik, and M. Cernak, “Hydrophilization of polyester nonwoven fabrics by atmospheric nitrogen plasma treatment,” Czech J. Physics, Supplement D, 52, 861-865, (2002).

The low temperature plasma produced by a surface barrier discharge generated in nitrogen at atmospheric pressure has been used for the treatment of polyester nonwoven (PET NW) fabrics. Surface modifications of three types of PET NW with different square weights (25, 50 and 80 g/m(2)) have been investigated. To determine the treated PET NW hydrophilicity, the strike-through time was measured. The optimum treatment time acceptable for technological applications was looked out with respect to the ageing phenomena. The obtained results show significant improvement in the wettability of PET NW. The effect of increasing wettability is considerably reduced with the increase of material square weight. The method has the potential to be suitable for industrial technologies, especially for thin materials.

1240. Morvova, M., “The influence of water vapour and temperature on depletion of carbon monoxide in d.c. corona discharge,” Czechoslovak J. Physics, 49, 1703-1719, (Dec 1999).

The plasmochemical and/or electrocatalytical reactions of carbon monoxide with water vapour were studied. Dc corona discharge of both polarities at room temperature and temperatures enhanced up to 70°C was applied at pressures close to atmospheric.

The reaction products were analysed by IR absorption spectrometry. The main products in the gas phase were CO2 and CH4. The reactions are influenced by the formation of a catalytically active surface layer on electrodes. The composition of this layer depends on the polarity of electrode.

2181. Sparavigna, A.C., and R.A. Wolf, “Electron and ion densities in corona plasma,” Czechoslovak J. Physics, 56, B1062-1067, (Oct 2006).

In atmospheric pressure corona systems, the densities of electrons and ions determine the level of treatments. Here, the electron and ion densities in a corona plasma are evaluated for a DC positive-polarity wire discharge in dry air at atmospheric pressure, in the coaxial wire-cylinder geometry. We use a new numerical iterative approach to solve the coupled equations for the electric field and charge densities. The role of electron diffusivity is discussed and the influence of the charge distribution between electrodes on the electric field strength and on the plasma region is analyzed.

1584. von Arnim, V., T. Stegmaier, D. Praschak, T. Bahners, A. Lunk, et al, “Continuous plasma treatment of textiles under atmospheric pressure,” in Proceedings of the 29th Aachen Textile Conference, DWI an der RWTH Aachen University, 2002.

2769. Combe, E.C., B.A. Owen, and J.S. Hodges, “A protocol for determining the surface free energy of dental materials,” Dental Materials, 20, 262-268, (Mar 2004).

The purpose of this study was to develop a standard methodology for measuring the surface free energy (SFE), and its component parts, of dental biomaterials. The contact angle of each of four samples of two materials--low density polyethylene and poly(methyl methacrylate)--was measured three times in each of six liquids (1-bromonaphthalene, diiodomethane, ethylene glycol, formamide, glycerol and distilled water). Critical surface tension estimates were obtained from Zisman plots. Data were then analyzed by the least-squares method to estimate the components of SFE. Estimates were also made for each of 12 liquid triplets, and by maximum likelihood and Bayesian analyses. The use of liquid triplets could yield misleading estimates of the components of SFE. A testing protocol is suggested in which multiple test liquids are used, and multiple methods of statistical analyses employed. SFE is important, in that high SFE is desirable when adhesion is required, but undesirable if plaque resistance is needed. Methodology that avoids some of the limitations of existing studies has been proposed.

464. Gerstenberg, K.W., “Corona pretreatment to allow wetting and bonding,” Deutsch Papierwirtsch, 1, 8, (1990).

 

<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | Next-->