Accudynetest logo

Products available online direct from the manufacturer

ACCU DYNE TEST ™ Bibliography

Provided as an information service by Diversified Enterprises.

3040 results returned
showing result page 57 of 76, ordered by

2149. Kaplan, S.L., “Plasma processes for wide fabric, film and non-wovens,” Surface and Coatings Technology, 186, 214-217, (May 2004).

To many people, plasma is a laboratory curiosity or limited in scale. Few know that plasma is a commercial process used daily in the treatment of fabrics, non-woven webs and film. This paper reviews applications and processes used to modify materials up to 60 in. in width in a roll-to-roll plasma system. The applications are quite varied. Sometimes, the process is simply to change the surface energy, while at other times, far more sophisticated processes, such as plasma-enhanced chemical vapor deposition (PECVD) processes, are employed to provide a chemical barrier or alter the tribological properties. As will be seen in this review presentation, plasma is extremely versatile and applicable to high-volume web applications.

2499. Arefi-Khonsari, F., J. Kurdi, M. Tatoulian, and J. Amouroux, “On plasma processing of polymers and the stability of the surface properties for enhanced adhesion to metals,” Surface and Coatings Technology, 142-144, 437-446, (Jul 2001).

This paper deals with the plasma surface treatment of polymers in a low frequency bell jar reactor with non-symmetrical configuration of electrodes. The highly energetic character of this discharge due to its low excitation frequency and electrode configuration, as well as its small discharge volume makes it a very efficient and fast functionalization process. Amongst the different plasma gases used for the adhesion improvement of polypropylene to aluminum, ammonia has shown to be the most suitable one for this application. Since the NH and NH 2 radicals play an important role in the kinetics of nitrogen incorporation in polymers, mixtures of N 2 and H 2 were also used as possible substitutes for ammonia. The former are more environmentally friendly and easier to handle in industry than ammonia. The efficiency of nitrogen rich mixtures in the case of the second application, i.e. adhesion improvement of copper to fluoropolymers has been compared to that of ammonia which still shows faster nitrogen incorporation. The last part of this paper is devoted to the study of the energetic character of plasmas of mixtures of He+NH 3 by OES and electrical measurements in the whole range of composition of the two gases. The results show that an ammonia percentage ranging from 5 to 10% in plasmas of mixtures of He/NH 3 represents a transition between two different discharge regimes. Plasmas of mixtures of He+2% NH 3 , characterized by highly energetic electrons, ions and probably metastables of helium give rise to enhanced adhesion of PP to aluminum which remains stable with time.

2535. Choi, Y.-H., J.-H. Kim, K.-H. Pek, W.-J. Ju, and Y.S. Hwang, “Characteristics of atmospheric pressure N2 cold plasma torch using 60-Hz AC power and its application to polymer surface modification,” Surface and Coatings Technology, 193, 319-324, (Apr 2005).

Atmospheric pressure N2 cold plasmas are generated with a torch-type generator using 60-Hz AC power. High flow rate N2 gas is injected into the plasma generator and high voltage of about 2 kV is introduced into the power electrode through transformer. Discharge characteristics of N2 cold plasma, such as current–voltage profile, gas temperature and radial species in plasma, are measured. As one possible application, the N2 cold plasma is used to modify the surface of polymer, especially polypropylene, for adhesion improvement. Power dissipation in discharge has the maximum value at optimal power electrode position, z=3 mm, which lead to the generation of more energetic electrons capable of creating N2* and N2+ excited states in plasmas effectively. These excited species can induce high population of oxygen and nitrogen atoms on polymer surface through creation of polymer excited states. Maximum bonding strength about 10.5 MPa is obtained at optimal power electrode position.

2536. De Geyter, N., R. Morent, C. Lays, L. Gengembre, and E. Payen, “Treatment of polymer films with a dielectric barrier discharge in air, helium and argon at medium pressure,” Surface and Coatings Technology, 201, 7066-7075, (May 2007).

In this paper, polyester (PET) and polypropylene (PP) films are modified by a dielectric barrier discharge in air, helium and argon at medium pressure (5.0 kPa). The plasma-modified surfaces are characterized by contact angle measurements and X-ray photoelectron spectroscopy (XPS) as a function of energy density. The polymer films, modified in air, helium and argon, show a remarkable increase in hydrophilicity due to the implantation of oxygen-containing groups, such as C–O, O–CDouble BondO and CDouble BondO. Atomic oxygen, OH radicals, UV photons and ions, present in the discharge, create radicals at the polymer surfaces, which are able to react with oxygen species, resulting in the formation of oxygen-containing functionalities on the polymer surfaces. It is shown that an air plasma is more efficient in implanting oxygen functionalities than an argon plasma, which is more efficient than a helium plasma. In an air plasma, most of the created radicals at the polymer surface will quickly react with an oxygen particle, resulting in an efficient implantation of oxygen functionalities. However, in an argon and helium plasma, the created radicals can react with an oxygen particle, but can also recombine with each other resulting in the formation of an oxidized cross-linked structure. This cross-linking process will inhibit the implantation of oxygen, resulting in a lower efficiency. In argon plasma, more ions are present to create radicals, therefore, more radicals are able to react with oxygen species. This can explain the higher efficiency of an argon plasma compared to a helium plasma.

2537. Dubreuil, M.F., and E.M. Bongaers, “Use of atmospheric pressure plasma technology for durable hydrophilicity enhancement of polymeric substrates,” Surface and Coatings Technology, 202, 5036-5042, (Jul 2008).

Parallel plates dielectric barrier discharge (DBD) at atmospheric pressure has been investigated to modify and functionalize the surface of different polymer substrates, e.g. polyolefins, poly(ethylene terephtalate), polyamide, in order to enhance their hydrophilic properties. Surface properties have been altered to meet the requirements of specific applications by introducing the appropriate functionalities through the use of either acetic acid or ethyl acetate. The coatings have been characterized through wettability measurements, labeling coupled with X-Ray photoelectron spectroscopy, and IR spectroscopy.

2538. Encinas, N., B. Diaz-Benito, J. Abenojar, and M.A. Martinez, “Extreme durability of wettability changes on polyolefin surface by atmospheric pressure plasma torch,” Surface and Coatings Technology, 205, 396-402, (Oct 2010).

In the present work three common polyolefins: high density polyethylene (HDPE), low density polyethylene (LDPE) and polypropylene (PP) have been treated with an atmospheric pressure air plasma torch (APPT) in order to improve their wettability properties. The variations in surface energy (γs), as well as the durability of the treatment are determined by means of contact angle measurements for different aging times after plasma exposure (up to 270 days) using five test liquids which cover a wide range of polarities. The introduction of new polar moieties (carbonyl, amine or hydroxyl) is confirmed by Fourier transform infrared spectroscopy in attenuated total multiple reflection mode (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). Furthermore, scanning electron microscopy (SEM) provides information on the morphological changes and variation on surface roughness, revealing that smoother, lamellar and semispheric micrometric structures are created on the LDPE, HDPE and PP surfaces, respectively. Results show that APPT treatment enhances both the total and polar components of the γs under study, with an unprecedent stability (> 8 months) in time.

2539. Friedrich, J.F., R. Mix, and G. Kuhn, “Adhesion of metals to plasma-induced functional groups at polymer surfaces,” Surface and Coatings Technology, 200, 565-568, (Oct 2005).

The peel strength of aluminium to polypropylene and poly(tetrafluoroethylene) was determined in dependence on the type and the concentration of functional groups on the polymer surface. For this purpose the polymer surface was equipped with monotype functional groups. The first method to produce monotype functionalized surfaces was an introduction of O functional groups using an oxygen plasma treatment and converting these groups to OH groups applying a wet chemical reduction. In result of this two-step treatment the hydroxyl group concentration at the polymer surface could be increased from 3–4 to 10–14 OH groups/100 C atoms. The second method consists in the deposition of a 150 nm adhesion-promoting layer of plasmapolymers or copolymers onto the polymer surface using the pulsed plasma technique. For that purpose functional groups carrying monomers as allyl alcohol, allylamine and acrylic acid were used. Applying the plasma-initiated copolymerization and using neutral “monomers” like ethylene or butadiene the concentration of the functional groups was varied.

A correlation of peel strength with the ability of forming chemical interactions between Al atoms and functional groups was found: COOH > OH >> NH2 > H(CH2–CH2).

2541. Kalapat, N., T. Amornsakchai, and T. Srikhirin, “Surface modification of biaxially oriented polypropylene (BOPP) film using acrylic acid-corona treatment, part II: Long term aging surface properties,” Surface and Coatings Technology, 234, 67-75, (Nov 2013).

In this work particular attention has been paid to the aging behavior of biaxially oriented polypropylene (BOPP) film surfaces modified with the acrylic acid (AAc) corona discharge treatment previously reported. Three different corona energies of 15.3, 38.2 and 76.4 kJ/m2 were studied. The surface properties of treated films during 90 days of aging were compared with those of normal air-corona treated films prepared with the same corona energies. The surface chemical compositions of aged films were analyzed by curve-fitting of the ATR-FTIR spectra. The wettabilities of all aged films were monitored by water contact angle and surface free energy measurements. The change of surface topology of air- and AAc-corona treated films was investigated at 1 day, 7 days and 90 days of aging using the technique. In addition, the surface adhesions of aged films were determined with the T-peeling test. The results showed that the amount of polar functional groups on the surface of aged films had changed. However, the aged films of the AAc-corona treated films still showed greater wettability than did the air-corona treated films and could retain high surface hydrophilicity for more than 90 days of aging under ambient condition. The surface topology of both types of aged films changed after aging from a globular structure to a flatter surface, due to mobility of the deposited polymer layer. The AAc-corona treated films showed rougher surfaces due to the influence of poly(acrylic acid) deposition and they could retain the improved surface wettability despite the change in surface topography. The adhesion peel forces of aged films decreased slightly due to the topological changes. A mechanism for the change in surface topography and in chemical functionality of each type of aged film is proposed.

2544. Kostov, K.G., T.M.C. Nishime, L.R.O. Hein, and A. Toth, “Study of polypropylene surface modification by air dielectric barrier discharge operated at two different frequencies,” Surface and Coatings Technology, 234, 60-66, (Nov 2013).

In this work, air dielectric barrier discharge (DBD) operating at the line frequency (60 Hz) or at frequency of 17 kHz was used to improve the wetting properties of polypropylene (PP). The changes in the surface hydrophilicity were investigated by contact angle measurements. The plasma-induced chemical modifications of PP surface were studied by X-ray photoelectron spectroscopy (XPS) and Fourier-transformed infrared spectroscopy (FTIR). The polymer surface morphology and roughness before and after the DBD treatment were analyzed by atomic force microscopy (AFM). To compare the plasma treatment effect at different frequencies the variation of the contact angle is presented as a function of the deposited energy density. The results show that both DBD treatments leaded to formation of water-soluble low molecular weight oxidized material (LMWOM), which agglomerated into small mounts on the surface producing a complex globular structure. However, the 60 Hz DBD process produced higher amount of LMWOM on the PP surface comparing to the 17 kHz plasma treatment with the same energy dose. The hydrophilic LMWOM is weakly bounded to the surface and can be easily removed by polar solvents. After washing the DBD-treated samples in de-ionized water their surface roughness and oxygen content were reduced and the PP partially recovered its original wetting characteristics. This suggested that oxidation also occurred at deeper and more permanent levels of the PP samples. Comparing both DBD processes the 17 kHz treatment was found to be more efficient in introducing oxygen moieties on the surface and also in improving the PP wetting properties.

2545. Kropke, S., Y.S. Akishev, and A. Hollander, “Atmospheric pressure DC glow discharge for polymer surface treatment,” Surface and Coatings Technology, 142-144, 512-516, (Jul 2001).

We present a new approach for the surface treatment of polymer films at atmospheric pressure. The DC glow discharge is generated by applying a high voltage between two electrodes which are placed in a channel with a high flux of air. The air flow removes charge carriers from the plasma zone which prevents the formation of sparks. In the almost homogeneous plasma a comparably high electrical power is converted forming a high concentration of active species. The flowing air transports them to the polymer surface. We report the results of the first experiments with this set-up. The influence of various process parameters on the discharge properties is shown. The resulting alterations in the surface structure of the polymers are characterised by XPS and contact angle geometry.

2547. Kwon, O.-J., S. Tang, S.-W. Myung, N. Lu, and H.-S. Choi, “Surface characteristics of polypropylene film treated by an atmospheric pressure plasma,” Surface and Coatings Technology, 192, 1-10, (Mar 2005).

After the atmospheric pressure plasma treatment of polypropylene (PP) film surface, we measured the contact angle of the surface by using polar solvent (water) and nonpolar solvent (diiodomethane). We also calculated the surface free energy of PP film by using the measured values of contact angles. And then we analyzed the change of the contact angle and surface free energy with respect to the conditions of atmospheric pressure plasma treatment. Upon each condition of atmospheric pressure plasma treatment, the contact angle and surface free energy showed optimum value or leveled off. Through AFM analysis, we also observed the change of surface morphology and roughness before and after plasma treatment. The surface roughness of PP film showed the highest value when the plasma treatment time was 90 s. Finally, we analyzed the change of chemical compositions on the PP film surface through XPS. As the result of analysis, we observed that polar functional groups, such as –CO, –C=O, and –COO were introduced on the PP film surface after atmospheric pressure plasma treatment.

2550. Medard, N., J.-C. Soutif, and F. Poncin-Epaillard, “Characterization of CO2 plasma-treated polyethylene surface bearing carboxylic groups,” Surface and Coatings Technology, 160, 197-205, (Oct 2002).

The surface modification of high density polyethylene by a CO2 microwave plasma is described with the aim of fixing carboxylic groups. The characterization is discussed in terms of functionalization, degradation, crystallization and cross-linking. The formation of carboxylic acids seems mainly favored by the presence of the CO2 active species. The degradation leading via chain scissions to the formation of volatile byproducts is shown to be heterogeneous by mainly affecting amorphous zones. The structural modification is associated with a twisting motion of macromolecular chains having defects to more organized conformations. Finally, cross-linking appears weak due to the absence of chromophoric sites and of VUV radiations in the plasma.

2551. Pappas, D.D., A.A. Bujanda, J.A. Orlicki, and R.E. Jensen, “Chemical and morphological modification of polymers under a helium-oxygen dielectric barrier discharge,” Surface and Coatings Technology, 203, 830-834, (Dec 2008).

In this work, the surface modifications of various polymer films due to helium–oxygen dielectric barrier discharge (DBD) exposure operating under atmospheric pressure are reported. The polymer films studied include ultra high molecular weight polyethylene, polyamide, polytetrafluoroethylene and polyimide. Experimental results reveal increased hydrophilicity and surface energy of the plasma exposed polymers. This is attributed to the presence of oxygen containing groups grafted onto the surface during plasma treatment, as confirmed by X-ray photoelectron spectroscopy (XPS) analysis. Scanning electron microscopy (SEM) data show the appearance of micro depressions, the size of which depends on the chemical structure and the treatment time, suggesting that mild etching occurs in a predicted fashion. Most importantly, this uniform modification occurs within a few seconds of exposure, time comparable to continuous on-line industrial processing.

2552. Park, J.-K., W.-T. Ju, K.-H. Paek, Y.-H. Kim, Y.-H. Choi, J.-H. Kim, and Y.-S. Hwang, “Pre-treatments of polymers by atmospheric pressure ejected plasma for adhesion improvement,” Surface and Coatings Technology, 174-175, 547-552, (Sep 2003).

Polymers such as rubbers generally have low surface energy, thus high hydrophobicity and inherent low bondability. An atmospheric pressure ejected plasma (APEP) source is developed for pre-treatments of polymers to overcome these intractable properties and improve the adhesion ability between polymers as environmental-friendly and simple alternative methods to conventional treatments in spite of several limitations until now. Proper operational conditions are found by T-peel tests performed with various plasma parameters and high peel strength up to 3.5 kgf/cm is achieved at those conditions. Optical emission spectroscopy revealed that the amount of oxygen radicals and gas temperatures are found to be higher at proper conditions in T-peel tests and Fourier transform infrared spectroscopy using attenuated total reflection. Scanning electron microscopy is used for the measurement of surface composition and morphology of pre-treated polymer specimen. These results established the advantage of pre-treatments by APEP source in proper operation conditions when compared to the conventional treatments in terms of improvement of the adhesion ability between polymers.

2560. Stefacka, M., M. Kando, M. Cernak, D. Korzec, E.G. Finantu-Dinu, et al, “Spatial distribution of surface treatment efficiency in coplanar barrier discharge operated with oxygen-nitrogen gas mixtures,” Surface and Coatings Technology, 174-175, 553-558, (Sep 2003).

The influence of the gas mixture of oxygen and nitrogen on the treatment efficiency distribution is investigated. The treatment efficiency is evaluated by contact angle measurement on polypropylene (PP) samples placed in varying distance from the coplanar barrier discharge electrode module. A planar electrode operated with 4 kHz signal and power of typically 10–21 W is used for treatment. A strong variation of contact angle as a function of distance from the CDB electrode surface is observed for samples treated 4 s in nitrogen discharge. Contact angle changes within 0.3 mm from 37.9 to 62.5° and it reaches 94.1° for 1.5-mm distance. It is already very close to the value of 103° measured on untreated PP. Much smaller treatment depth is obtained for mixture of nitrogen and oxygen. The experiments are performed without gas flow.fferent plasma treatments in a rf

2562. Villermet, A., P. Cocolius, G. Rames-Langlade, F. Coeuret, et al, “ALDYNE surface treatment by atmospheric plasma for plastic films converting industry,” Surface and Coatings Technology, 174-175, 899-901, (Oct 2003).

Based on the Corona process and a substitution of air with specific gaseous mixtures into the discharge area, the newly developed surface treatment ALDYNE™ offers both high level improvement and high flexibility to film converters. By grafting nitrogen-based chemical functions, it confers to the treated surface excellent properties such as high surface energy and high adhesion of coatings.

2564. Zhang, C., and K. Fang, “Surface modification of polyester fabrics for inkjet printing with atmospheric-pressure air/Ar plasma,” Surface and Coatings Technology, 203, 2058-2063, (Apr 2009).

Without any preprocessing, polyester fabric has a lower ability to hold on water and inks due to the smooth morphology and chemistry property of polyester fibers. Therefore, patterns directly printed with pigment inks have poor color yields and bleed easily. Plasma surface treatment of polyester fabrics was carried out in composite atmosphere with air and 10% Ar under different experimental conditions. After plasma treatment the samples were printed with pigment inks. The results show that surface-modified polyester fabrics exhibited enhanced color yields and excellent pattern sharpness. SEM and XPS analyses indicated that this improved color performance was mainly contributed by not only the etching effect but also oxygen-containing polar groups induced onto fiber surfaces through plasma treatment. Thereby the surface modification of polyester fabrics using air/Ar plasma offers a potential way to fabric pretreatment for pigment inkjet printing with the advantages of environmental friendly and energy saving over traditional pretreatment methods.

2735. Pappas, D.D., A.A. Bujanda, J.D. Demaree, J.K. Hirvonen, W. Kosik, R. Jensen, and S. McKnight, “Surface modification of polyamide fibers and films using atmospheric plasmas,” Surface and Coatings Technology, 201, 4384-4388, (2006).

In this work, polyamide (Nylon 6) fibers and films were treated under atmospheric pressure glow discharges (APGD) and the effects on the morphology and chemistry of the material were studied. The fibers were plasma treated with N 2 , C 2 H 2 in He for (0.6–9.6) s at a frequency of 90 kHz, leading to the functionalization of the surface through the addition of new reactive chemical groups such as –COOH and –OH and changing the energy, chemical composition and wettability of the surface.Surface characteristics were examined via contact angle measurements, XPS, and SEM. Wettability tests revealed the improvement of the hydrophilic character of the surface as the water contact angle measured after the plasma treatments significantly decreased. The corresponding changes of the total surface energy were evaluated with a dynamic contact angle analysis system revealing a significant increase due to the exposure that can be mainly attributed to the increase of its polar component. Preliminary XPS results show a significant increase in oxygen content with the addition of carboxylic and hydroxylic groups and a decrease in the carbon content of the surface. Most importantly, the plasma modified nylon fibers and films exhibit a stable wetting behavior, even for weeks after being treated, suggesting that it is a promising technique to minimize aging phenomena.

2980. Kalapat, N., and T. Amornsakchai, “Surface modification of biaxially oriented polypropylene (BOPP) film using acrylic acid-corona treatment, Part I. Properties and characterization of treated films,” Surface and Coatings Technology, 207, 594-601, (Aug 2012).

In this work, the acrylic acid (AAc)-corona discharge was carried out on biaxially oriented polypropylene (BOPP) films by introducing AAc vapor into the corona region of a normal corona treater. Three different corona energies of 15.3, 38.2 and 76.4 kJ/m2 were studied. Surface properties of treated films were compared with those of air-corona treated films prepared with the same corona energies. The change in chemical composition on the film surface was characterized by curve-fitting of the ATR-FTIR spectra. The wettability of treated films, before and after aging in different environments, was observed by water contact angle and surface free energy. The surface morphology of air- and AAc-corona treated films was investigated using SEM and AFM techniques. Adhesion of the treated films to some other substrate was determined with the T-peeling test. It was found that the hydrophilicity of all treated films increased with increasing corona energy. AAc-corona treated films showed greater wettability than did the air-corona treated films and could retain the surface hydrophilicity for more than 90 days of aging under ambient conditions. The surface morphology of BOPP films changed after corona treatment into a globular structure. The AAc-corona treated films showed rougher surfaces due to surface oxidation and polymer formation, whereas, air-corona treated films displayed a similar structure but of smaller size due to the formation of low molecular weight oxidized materials (LMWOM) arising from the degradation of BOPP films. AAc-corona treated films showed greater peel strength than did the air-corona treated films.

2983. Van Deynse, A., P. Cools, C. Leys, R. Morent, and N. De Geyter, “Influence of ambient conditions on the aging behavior of plasma-treated polyethylene surfaces,” Surface and Coatings Technology, 258, 359-367, (Nov 2014).

Plasma treatment is often used to modify the surface properties of polymer films, since it offers numerous advantages over the conventional surface modification techniques. However, plasma-treated polymer films have a tendency to revert back to the untreated state (aging process). Therefore, the stability of plasma-induced changes on polymer surfaces over a desired period of time is a very important issue. The objective of this study is to examine the effect of storage conditions (relative humidity and temperature) on the aging behavior in air of plasma-treated low density polyethylene (LDPE) films. Plasma treatment is performed using a dielectric barrier discharge (DBD) operating in different argon/water vapor mixtures at medium pressure (5.0 kPa). Results show that the aging process can be suppressed by storing the plasma-modified LDPE films at low temperature and by decreasing the relative humidity of the surrounding air. Adding water vapor in the plasma discharge has a positive influence on the aging process: lower plateau WCA values are found for plasmas containing a higher water vapor concentration and it takes a longer time to reach these plateau values. In this paper, it is also shown that storage first at a lower temperature and then aging at a higher temperature is not able to slow down the aging effect.

2984. Morent, R., N. De Geyter, C. Leys, L. Gengembre, and E. Payen, “Study of the ageing behaviour of polymer films treated with a dielectric barrier discharge in air, helium and argon at medium pressure,” Surface and Coatings Technology, 201, 7847-7854, (Jun 2007).

2986. Popelka, A., I. Novak, M. Al-Maadeed, M. Ouederni, and I. Krupa, “Effect of corona treatment on adhesion enhancement of LLDPE,” Surface and Coatings Technology, 335, 118-125, (Feb 2018).

Polymers/metal laminates are often used to improve physical and mechanical properties, especially those required in building applications. A flat aluminum composite panel (ACP) consisted mainly of two thin metal sheets usually made of aluminum (Al) and a non-metal core, such as polyethylene (PE). The lack of adhesion associated with the low wettability of PE is a serious problem. An eco-friendly, dry, non-destructive corona treatment technique can be applied to solve this problem. In this work, the use of a corona treatment to enhance the adhesion properties of linear low-density polyethylene (LLDPE) was studied. The changes in surface and adhesion properties were thoroughly analyzed using various analytical techniques and methods to obtain the optimal parameters for corona discharge using contact angle measurements, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). AFM force adhesion measurements were used to analyze the effect of the corona treatment on the adhesion enhancement of LLDPE, and the peel tests confirmed a significant increase in peel resistance in the LLDPE/Al laminate. A synergy effect from using the corona treatment in combination with an ethylene acrylic acid dispersion primer was observed.

2994. Park, W.J., S.G. Yoon, W.S. Jung, and D.H. Yoon, “Effect of dielectric barrier discharge on surface modification characteristics of polyimide film,” Surface and Coatings Technology, 201, 5017-5020, (Feb 2007).

3001. Cui, N.-Y., D.J. Upadhyay, C.A. Anderson, and N.M.D. Brown, “Study of the surface modification of a nylon-6,6 film processed in an atmospheric pressure air dielectric barrier discharge,” Surface and Coatings Technology, 192, 94-100, (Mar 2005).

A Nylon-6,6 film has been treated using an atmospheric pressure air dielectric barrier discharge (DBD). The resultant surface modifications were studied using X-ray photoelectron spectroscopy (XPS), contact angle measurement and secondary ion mass spectrometry (SIMS). The surface oxidation arising in the DBD discharge was found to arise in two stages: in the first stage, the creation of the carbon sites singly bonded to oxygen is dominant, the second stage leads to further conversion of such lightly oxidised carbons to those more heavily oxidised. The marked increase found in the hydrophilicity of the surface post-treatment is in the main believed to be associated with the earlier outcome. Partial recovery of the surface contact angle values is found for the treated samples following extended storage in ambient air. The final contact angle obtained for the treated samples was ∼50°, still reduced significantly from that of 83.5° for the untreated material.

3013. Kusano, Y., S. Teodoru, and C.M. Hansen, “The physical and chemical properties of plasma treated ultra-high-molecular-weight polyethylene fibers,” Surface and Coatings Technology, 205, 2793-2798, (Jan 2011).

A uniform and smooth transfer of stresses across the polymer matrix/fiber interface is enhanced when adhesion between the matrix and fiber surface is optimized. In the absence of covalent bonds matching the Hansen solubility (cohesion) parameters (HSP) of the fiber surface with the HSP of a matrix polymer assures maximum physical adhesion to transfer loads uniformly. Plasma treatment of ultra-high-molecular-weight (UHMWPE) fibers is shown to significantly increase the amount of oxygen in the surface. There are two distinct types of surfaces in both the plasma treated and the untreated UHMWPE fibers. One type is typical of polyethylene (PE) polymers while the other is characteristic of the oxygenated surface at much higher values of HSP. The oxygenated surface of the plasma treated fibers has the HSP δD, δP, and δH equal to 16.5, 15.3, and 8.2, compared to the pure PE surface with HSP at 18.0, 1.2, and 1.4, all in MPa½. The dispersion parameter has been lowered somewhat by the plasma treatment, while the polar and parameters are much higher. The HSP methodology predicts enhanced adhesion is possible by skillful use of anhydride and nitrile functional groups in matrix or tie polymers to promote compatibility in the system.

100. Foerch, R., and D. Johnson, “XPS and SSIMS analysis of polymers: the effect of remote nitrogen plasma treatment on polyethylene, poly(ethylene vinyl alcohol) and poly(ethylene terephthalate),” Surface and Interface Analysis, 17, 847-854, (1991).

A study has been undertaken in which both x-ray photoelectron spectroscopy (XPS) and Fast atom bombardment static secondary ion mass spectrometry (FAB-SSIMS) have been used to study the effects of remote nitrogen plasma treatment on polymers such as linear low-density polyethylene (LLDPE), poly(ethylene vinyl alcohol) (EVOH) and poly(ethylene terephthalate) (PET). For comparison, remote oxygen plasma treatment was also performed on LLDPE. A very rapid uptake of nitrogen was observed for all polymers. Negative FAB-SSIMS indicated CN, CNO and C2N-3 fragments on each of the nitrogen plasma-treated polmers. Positive FAB-SSIMS spectra of plasma-treated LLDPE showed relatively high intensity, high mass fragments, thought to originate from additives. These were not observed for the other two polymers. Significant amounts of aromatic-type fragments were observed in the positive FAB-SSIMS spectra of all treated polymers. Surface stability studies have shown that for both nitrogen and oxygen plasma-treaed LLDPE there is a substantial decrease in the surface functionality on exposure to air. This effect was much less prevalent for EVOH and PET.

244. Morra, M., E. Occhiello, and F. Garbassi, “Surface characterization of plasma-treated PTFE,” Surface and Interface Analysis, 16, 412-417, (1990).

PTFE was treated with oxygen and argon plasmas and the effects of treatment were evaluated by actinometry, SEM, XPS, static SIMS and contact angle measurements. At short treatment times for both plasmas and at long treatment times for argon plasmas, chemical modification of the surface was dominant, while at longer oxygen plasma treatment times, surfaces are deeply etched but chemically equivalent to untreated PTFE. Interestingly, the change in surface chemistry is paralleled by a simultaneous variation in plasma chemistry, suggesting that the two vary accordingly. The wetting behaviour of treated surfaces is interopreted on the basis of current theories on surface dynamics and contact angle hysteresis.

334. Sheng, E., I. Sutherland, D.M. Brewis, and R.J. Heath, “Effects of flame treatment on propylene-ethylene copolymer surfaces,” Surface and Interface Analysis, 19, 151-156, (1992).

The effects of flame treatment on the surfaces of a propylene-ethylene copolymer have been studied using XPS, contact angle measurement, vapour-phase derivatization and an adhesion test. The results obtained were compared to those from the homopolymer. An optimum air-to-gas ratios of ∼11:1 has been found. Close correspondence between water contact angle and oxygen concentration was found, with the exception of high oxygen concentrations. The orientation or migration of functional groups away from the surface has been proposed to cause the non-correspondence between water contact angle and oxygen concentration. Diiodomethane advancing contact angle was found to remain constant, independent of flame conditions. XPS analysis in conjunction with vapourphase derivatization with trifluroacetic anhydride (TFAA) suggests that up to 20% and 30% of the oxygen introduced in the surfaces is present as hydroxyl groups for propylene homopolymer and the copolymer, respectively. High adhesion levels of the flame-treated copolymer with a polyurethane-based paint were found. In most cases, the adhesion failure was complex, but involved the cohesive failure of the copolymer.

360. Sutherland, I., D.M. Brewis, R.J. Heath, and E. Sheng, “Modification of polypropylene surfaces by flame treatment,” Surface and Interface Analysis, 17, 507-510, (Jun 1991).

The changes induced on the surface of polypropylene homopolymer following flame treatment have been studied. Surface compositions were determined using x-ray photoelectron spectroscopy and compared to surface free energies estimated from contact angle measurements. The effect of air-to-gas ratio, total flow rate, contact time with the flame and the distance between the inner cone tip of the flame and the polymer have been investigated. Mild flame treatments were found to be effective in promoting the adhesion of polyurethane paints to the polypropylene. The adhesion between flame-treated polypropylene and the paint film was assessed using a composite butt test and the measured bond strengths were found to be well in excess of those obtained using solvent wiping or chlorinated polyolefin primers.

1265. O'Hare, L.-A., S. Leadley, and B. Parbhoo, “Surface physicochemistry of corona-discharge-treated polypropylene film,” Surface and Interface Analysis, 33, 335-342, (Apr 2002).

Corona discharge treatment (CDT) is a surface modification technique commonly used to treat plastic films prior to adhesive bonding, printing with inks, lamination to other films and other coating applications. In this study, the treatment conditions are, in energy terms, representative of those used in industrial and laboratory coating applications.

The physicochemistry of the surface of untreated and corona-discharge-treated biaxially oriented polypropylene (BOPP) film was investigated using a number of complementary surface analytical techniques: contact angle analysis; x-ray photoelectron spectroscopy (XPS); atomic force microscopy (AFM). This report describes the surface energetics, chemical functionality and morphology of polypropylene film before and after CDT. Both AFM and XPS were utilized, along with washing experiments, to investigate the presence of a weak boundary layer.

The surface energy was found, as expected, to increase with increasing energy of the corona. The functional groups incorporated onto the surface have been identified as hydroxyl [CSingle BondOH], peroxy [CSingle BondOSingle BondO], carbonyl [CDouble BondO], ester [CSingle BondOSingle BondCDouble BondO], carboxylic acid [HOCDouble BondO] and carbonate [OC(O)O]. These groups are present in varying relative concentrations, depending on the energy of the corona utilized.

The morphology of the film changed after CDT. Initially, a fibrillar crystalline structure was observed, whereas after CDT a globular morphology became apparent. These globular features were attributed to low-molecular-weight oxidized material (LMWOM) created by CDT. The roughness of the film was not found to increase under the corona conditions employed.

Formation of LMWOM was found to be independent of treatment energy. However, two mechanisms have been suggested for its formation, dependent on the energy of treatment: below a threshold energy of ∼4 kJ m−2, oxidation and scission of the inherent low-molecular-weight boundary layer present on polyolefin films is the dominant means for the formation of LMWOM; above 4 kJ m−2, oxidation and scission of the polymer backbone is the main process.

This work provides a comprehensive reference around CDT of polypropylene film for industrial applications, while also informing how the optimal level of treatment can be determined. In the case of adhesion of silicones, it would be expected that optimal adhesion would be obtained where the maximum amount of oxygen incorporated was in a water-insoluble form. Copyright © 2002 John Wiley & Sons, Ltd.

1268. Garbassi, F., M. Morra, E. Occhiello, L. Barino, and R. Scordamaglia, “Dynamics of macromolecules: A challenge for surface analysis,” Surface and Interface Analysis, 14, 585-589, (Oct 1989).

XPS and contact angle measurement have been used to study oxygen–plasma-treated polypropylene (PP) surfaces aged at variable temperatures. Surface rearrangement leading to low wettabillity has been observed, without alteration of the surface composition, as determined by XPS. Experimental results have been interpreted in terms of internal rearrangements of a modified layer, <5 nm thick, formed on top of the PP and immiscible with it.

We also modelled the composition of the surface layer and calculated the relative mobility of modified and non-modified polymer chains. On this basis, the experimentally observed behaviour can be interpreted in terms of surface rearrangement driven by a compromise between striving for lower surface tension and maximizing inter-and intramolecular interactions, mainly hydrogen bonds.

The surface composition observed after treatment with plasma, corona, flame or other for enhancing surface tension is then time dependent. For this reason, the procedure used for surface analysis, namely the time allowed for surface equilibration, should be specified in reports.

1274. Briggs, D., D.M. Brewis, R.H. Dahm, and I.W. Fletcher, “Analysis of the surface chemistry of oxidized polyethylene: Comparison of XPS and ToF-SIMS,” Surface and Interface Analysis, 35, 156-167, (Feb 2003).

A series of low-density polyethylene (LDPE) surfaces, chemically modified using a number of oxidative techniques employed for adhesion enhancement (pretreatments), have been studied by time-of-flight (ToF) SIMS and XPS. The methods consisted of corona discharge, flame, electrochemical, chromic acid, acid dichromate and acid permanganate treatment. All except flame treatment were performed under mild and fairly severe conditions to yield a range of surface chemistries. The XPS analysis, using high energy resolution and a refined approach to C 1s curve-fitting, provided some new insights into the quantitative assessment of the type and concentration of functional groups. Both positive and negative ion ToF-SIMS spectra were obtained at high mass resolution. The oxygen-containing fragments were identified by accurate mass analysis and subjected to a detailed comparison with the XPS results. No convincing relative intensity correlations could be identified that would allow particular secondary ion fragments to be associated strongly with particular functional groups (in this multi-functional surface situation). Inorganic residues resulting from wet chemical treatments were also investigated and here the two techniques were found to be more complementary. Copyright © 2003 John Wiley & Sons, Ltd.

1282. Chappell, P.J.C., J.R. Brown, G.A. George, and H.A. Willis, “Surface modification of extended chain polyethylene fibres to improve adhesion to epoxy and unsaturated polyester resins,” Surface and Interface Analysis, 17, 143-150, (Mar 1991).

Extended chain polyethylene fibres have been treated in ammonia and oxygen lo-pressure gas discharges (plasmas) in order to enhance adhesion to epoxy and unsaturated polyester resins, respectively, and thus significantly improve fibre/resin interfacial properties in fibre-reinforced polymer composites. Ammonia plasma treatment results in the incorporation of amine functional groups onto the fibre suface. The treated fibre surface has been analysed using XPS and spectrophotometric techniques. Extended chain polyethylene/epoxy composites made from ammonia, plasma-treated fibres show a marked increase in interlaminar shear strength over composites made from untreated, corona-treated or oxygen plasma-treated fibres. The increase in fibre/resin adhesion after ammonia plasma treatment is confirmed by SEM observations of fracture surfaces, which show clean interfacial fracture surfaces in composites made from treated fibres. Fibres modified by oxygen plasma treatment contain a significant concentration of carbon-oxygen functionalities, which contribute to the polarity of the surface and hence increase wet-out by unsaturated polyester resins. The concentration and nature of carbon-oxygen species on the fibre surface have been determined by XPS. Pull-out tests on multifilament yarns embedded in a polyester resin confirm the high fibre/matrix adhesion achieved with the oxygen plasma-treated fibres compared to corona-treated or untreated fibres. Tensile properties of the fibres are reduced significantly after prolonged treatment in an oxygen plasma, while in an ammonia plasma the fibre strength is unaffected.

1289. Jama, C., O. Dessaux, P. Goudmand, L. Gengembre, and J. Grimblot, “Treatment of poly(ether ether ketone) (PEEK) plastic surfaces by remote plasma discharge. XPS investigation of the ageing of plasma-treated PEEK,” Surface and Interface Analysis, 18, 751-756, (1992).

The effect of a cold remote N2 plasma (CRNP) or N2 + O2 plasma (CRNOP) on poly(ether ether ketone) (PEEK) is studied. The amount of nitrogen or oxygen uptake and functionalities are determined by x-ray photoelectron spectroscopy (XPS). After CRNP treatment, the N/C and O/C atomic ratios are 0.301 and 0.333, respectively. Nitrogen functional groups are not detected by CRNOP treatment, and the O/C atomic ratio is then 0.785. The ageing process of the treated PEEK surface in the open air is investigated in both cases. For CRNOP treatment the O/C atomic ratio decreases by carbonate function departure, whereas for CRNP treatment the total amount of nitrogen and oxygen graft atoms goes through a maximum after 1 h of air exposure.

1636. O'Hare, L.-A., J.A. Smith, S.R. Leadley, B. Parbhoo, A.J. Goodwin, J.F. Watts, “Surface physico-chemistry of corona-discharge-treated poly(ethylene terephthalate) film,” Surface and Interface Analysis, 33, 617, (2002).

The effect of energy of corona discharge treatment (CDT) on the physico-chemistry of the surface of a polyester film was investigated systematically using a number of complementary surface analytical techniques: contact angle analysis, x-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry and atomic force microscopy. The energy of treatment can be controlled by either varying the speed of the treatment with constant power input or by varying the power of the treatment with constant speed. The changes in surface energy, surface chemistry and surface morphology of poly(ethylene terephthalate) (PET) induced by these two modes of CDT have been investigated.

The surface energy and the polar contribution of the film increased with increasing energy of corona. Phenolic-OH, carbonyl and carboxylic acid (HOC=O) have been identified as the functional groups incorporated onto the surface. Low-molecular-weight oxidized materials were observed in the form of a globular morphology on the surface of the film. By washing the film in methanol–water prior to surface analysis, it was shown that the oxygen content at the surface of the film decreased and the globular morphology was removed.

Differences in the surface energy of corona-treated PET films have been observed under similar corona energy conditions, depending on whether the sample was treated with constant speed or constant power. However, the total surface oxygen content was found to be similar at low-energy treatments. When the high-resolution C 1s XPS spectrum was peak fitted, the relative concentrations of functional groups introduced and other changes to the original polymer structure were shown to be independent of the mode of treatment.

These observations may be explained because although the total energy transferred from the power source to the PET under the conditions of ‘constant power, variable speed’ and ‘variable power, constant speed’ is theoretically the same, these experimental conditions are not interchangeable. At constant power, the concentration of active species, radiation and dielectric breakdowns in the discharge are independent of speed. However, in the case of constant speed, the concentration of active species, radiation and dielectric breakdown increase with increasing power, resulting in a different surface energy between the two sets of samples. However, because the composition of the active species will not change, the functional groups on the surface of the film will be the same across comparable energy levels, independent of mode of treatment. Copyright © 2002 John Wiley & Sons, Ltd.

1809. Penn, L.S., and E.R. Bowler, “A new approach to surface energy characterization for adhesive performance prediction,” Surface and Interface Analysis, 3, 161-164, (Aug 1981).

A new approach to qualitatively predicting adhesion at a solid/solid interface is described. It is based on thermodynamic compatibility of the two adhering surfaces, but it overcomes the weaknesses of existing methods by using a full set of contact angle data and by assembling the data to reveal the main features of the set without loss of information. Adhesive performance data to support this approach are presented.

2082. Le, Q.T., J.J. Pireaux, and J.J. Verbist, “Surface modification of PET films with RF plasma and adhesion of in situ evaporated Al on PET,” Surface and Interface Analysis, 22, 224-229, (Jul 1994).

PET (Polyethylene terephthalate) films were modified with two different plasmas, nitrogen and oxygen, as a function of treatment times and RF powers. Firstly, the chemical composition of the plasma-modified PET films was investigated by XPS. In the case of nitrogen plasma, the formation of amine, imine and amide groups is detected. A slight diffusion of nitrogen-containing species into the PET bulk is also observed by angle-resolved XPS measurements. The appearance of alcohol, carbonyl and carboxyl functions is observed in the case of oxygen plasma treatment. After thermal deposition of an aluminium film, peel tests reveal that the Al/PET adhesion increases as follows: untreated < nitrogen plasma < oxygen plasma treatment.

Secondly, after sevderal successive depositions of thermally evaporated Al on oxygen plasma treated PET film, XPS was used to study the chemistry at the interface. The XPS results reveal that the additional reactive sites created on the PET surface by the treatment explain the significant improvement in Al/PET adhesion observed for plasma-modified samples.

2102. Paynter, R.W., “XPS studies of the modification of polystyrene and polyethyleneterephthalate surfaces by oxygen and nitrogen plasmas,” Surface and Interface Analysis, 26, 674-681, (Aug 1998).

Polystyrene and polyethyleneterephthalate surfaces were exposed to helium, oxygen/helium and nitrogen/hydrogen plasmas singly and in combination. The treated surfaces were evaluated by water contact-angle measurements and by x-ray photoelectron spectroscopy. It was found that the oxygen and nitrogen tend to graft to common carbon atoms, to form amide groups. The water wettability was found to correlate with the fraction of electronegative atoms incorporated into the surface. © 1998 John Wiley & Sons, Ltd.

2143. Kaplan, S.L., F.S. Lopata, and J. Smith, “Plasma processes and adhesive bonding of polytetrafluoroethylene,” Surface and Interface Analysis, 20, 331-336, (1993).

The virtues of chemical inertness and low surface energy which make polytetrafluoroethylene (PTFE) a valuable engineering polymer also account for the difficulty in achieving structural adhesive bonds. While plasma surface treatment has proven to be the most effective means of maximizing strength and permanence of adhesive bonds with the most inert of engineering polymers, a simple plasma treatment has proven elusive for PTFE. The following studies evaluate two very different plasma processes, activation and deposition, as a means to achieve reliable and high-strength structural adhesive bonds. Sodium naphthalene-etched PTFE is used as a control. Presented are ESCA data which support a theory that improvement is limited by a weakened boundary layer of the PTFE.

2506. Carbone, E.A.D., N. Boucher, M. Sferrazza, and F. Reniers, “How to increase the hydrophobicity of PTFE surfaces using an r.f. atmospheric-pressure plasma torch,” Surface and Interface Analysis, 42, 1014-1018, (Jun 2010).

An experimental investigation of the surface modification of polytetrafluoroethylene (PTFE) by an Ar and Ar/O2 plasma created with an atmospheric-pressure radio frequency (r.f.) torch is presented here. The surfaces were analyzed by atomic force microscopy (AFM), XPS and water contact angle (WCA) to get an insight of the surface morphology and chemistry. An increase of roughness is observed with the Ar/O2 plasma treatment. The WCA analysis shows that these surfaces are more hydrophobic than pristine PTFE; a contact angle of 135° was measured. When a PTFE surface is treated by Ar plasma, no roughening or significant change of the surface morphology and chemistry of PTFE was observed. The effects of the Ar and O2 fluxes on the PTFE surface treatment were analyzed, as well as the effect of the power and treatment time. The plasma phase was also analyzed by optical emission spectroscopy, and some correlations with the treatment efficiency of the plasma are made. The chemistry on the surface is finally discussed and the competition between etching and re-deposition chemical reactions on the surface is proposed as a possible explanation of the results. Copyright © 2010 John Wiley & Sons, Ltd.


<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | Next-->