Accudynetest logo

Products available online direct from the manufacturer

ACCU DYNE TEST ™ Bibliography

Provided as an information service by Diversified Enterprises.

3040 results returned
showing result page 12 of 76, ordered by
 

2963. Wolf, R.A., and A.C. Sparavigna, “Role of plasma surface treatments on wetting and adhesion,” Engineering, 2, 397-402, (2010).

There are many current and emerging wetting and adhesion issues which require an additional surface processing to enhance interfacial surface properties. Materials which are non-polar, such as polymers, have low surface energy and therefore typically require surface treatment to promote wetting of inks and coating. One way of increasing surface energy and reactivity is to bombard a polymer surface with atmospheric plasma. When the ionized gas is discharged on the polymer, effects of ablation, crosslinking and activation are produced on its surface. In this paper we will analyse the role of plasma and its use in increasing the surface energy to achieve wettability and improve adhesion of polymeric surfaces.

1449. Lee, M., “Cold gas plasma treatment - there is no better bond,” European Adhesives and Sealants, 10, 12-13, (Jun 1993).

692. Mount, E.M. III, and A.J. Benedict, “Metallisable heat-sealable, oriented polypropylene film has layer of copolyester to improve bonding to metal,” European Patent #444340, 1991.

914. Martinez-Martinez, M., and M.D. Romero-Sanchez, “Strategies to improve the adhesion of rubbers to adhesives by means of plasma surface modification,” European Physical J. - Applied Physics, 34, 125-138, (2006).

The surface modifications produced by treatment of a synthetic sulfur vulcanized styrene-butadiene rubber with oxidizing (oxygen, air, carbon dioxide) and non oxidizing (nitrogen, argon) RF low pressure plasmas, and by treatment with atmospheric plasma torch have been assessed by ATR-IR and XPS spectroscopy, SEM, and contact angle measurements. The effectiveness of the low pressure plasma treatment depended on the gas atmosphere used to generate the plasma. A lack of relationship between surface polarity and wettability, and peel strength values was obtained, likely due to the cohesive failure in the rubber obtained in the adhesive joints. In general, acceptable adhesion values of plasma treated rubber were obtained for all plasmas, except for nitrogen plasma treatment during 15 minutes due to the creation of low molecular weight moieties on the outermost rubber layer. A toluene wiping of the N{2 } plasma treated rubber surface for 15 min removed those moieties and increased adhesion was obtained. On the other hand, the treatment of the rubber with atmospheric pressure by means of a plasma torch was proposed. The wettability of the rubber was improved by decreasing the rubber-plasma torch distance and by increasing the duration because a partial removal of paraffin wax from the rubber surface was produced. The rubber surface was oxidized by the plasma torch treatment, and the longer the duration of the plasma torch treatment, the higher the degree of surface oxidation (mainly creation of C O moieties). However, although the rubber surface was effectively modified by the plasma torch treatment, the adhesion was not greatly improved, due to the migration of paraffin wax to the treated rubber-polyurethane adhesive interface once the adhesive joint was produced. On the other hand, the extended treatment with plasma torch facilitated the migration of zinc stearate to the rubber-adhesive interface, also contributing to deteriorate the adhesion in greater extent. Finally, it has been found that cleaning of SBS rubber in an ultrasonic bath prior to plasma torch treatment produced a partial removal of paraffin waxes from the surface, and thus improved adhesion was obtained.

1578. Palmers, J., “Economic alternative to primers,” European Plastic Product Manufacturer, 51, (Apr 2002).

33. Bonn, R., and J.J. van Aartsen, “Solubility of polymers in relation to surface tension and index of refraction,” European Polymer J., 8, 1055-1066, (1972).

An expression is derived, from simple statistical thermodynamical considerations, to relate the cohesive energy density (C.E.D.) to intermolecular interaction parameters. From analogous theoretical relations in the literature for the surface tension and the index of refraction together with the derived expression for the C.E.D., we can obtain relations between the C.E.D. on the one hand and the surface tension and the index of refraction, respectively, on the other. These relations are compared with empirical relations in the literature. The exponents of the surface tension and the index of refraction in the empirical relations are different from those in the relations obtained here. The derived relation between C.E.D. and surface tension is shown to be applicable to experimental data with excellent agreement for both organic liquids and polymers. As surface tension measurements are very simple to perform, another main point of interest of the derived relation is knowledge of the solubility parameters of polymers (the square root of the C.E.D.) from critical surface tension measurements without the necessity of solubility and swelling experiments which are often awkward. The relation between the C.E.D. and the index of refraction derived in this paper implies grave theoretical objections to applications in practice.

64. Collins, A.G.S., A.C. Lowe, and D. Nicholas, “An analysis of PTFE surfaces modified by exposure to glow discharges,” European Polymer J., 9, 1173-1185, (1973).

A detailed analysis is reported of the chemical and physical modifications which occur to PTFE surfaces exposed to glow discharges in ammonia gas and in air. The analytical methods used were infra-red attenuated total reflectance and differential attenuated total reflectance spectroscopy, X-ray photoelectron spectroscopy, contact angle measurements and scanning electron microscopy. The suitability for bonding with adhesives and the stability of the modified surfaces to attack by oxidizing acids are also reported.

298. Poncin-Epaillard, F., B. Chevet, and J.-C. Brosse, “Functionalization of polypropylene by a microwave (433 MHz) cold plasma of carbon dioxide.Surface modification or surface degradation?,” European Polymer J., 26, 333-339, (1990).

The surface modification of isotactic polypropylene (PP) in a microwave plasma of CO2 is described. The modified PP is characterized in bulk and also at its surface. The mechanism of plasma modification is discussed in terms of degradation and oxidation. The degradation leads to volatile products and to the formation of a layer of oxidized oligomers of PP. The oxidation leads to ketone, acid or ester groups. The degradation and oxidation rates depend on plasma parameters (duration, discharge power, gas flow, pressure, discharge or post-discharge treatment). The oxidation rates vs the various plasma parameters show a maximum. The crosslinking of PP (Crosslinking Activated Species of INert Gases) seems to be negligible.

1733. Jorda-Vilaplana, A., V. Fombuena, D. Garcia-Garcia, M.D. Samper, and L. Sanchez-Nacher, “Surface modification of polylactic acid (PLA) by air atmospheric plasma treatment,” European Polymer J., 58, 23-33, (Jun 2014).

The main objective of this experimental study is the validation of the technique of atmospheric plasma with the aim of improving the surface energy of the polylactic acid (PLA) for further adhesion uses. The wettability of PLA has been improved with the application of an atmospheric plasma surface treatment. This method provides good adhesion properties with the optimizing the process parameters in terms of the nozzle–substrate distance and sample advance rate. In order to achieve that goal, a new and environmentally friendly technology has been used which is based on the use of air atmospheric plasma. The effects of the surface treatment on this type of substrates have been analyzed. The macroscopic effects of the process parameters have been determined using contact angle measurements and subsequent surface free energy (SFE) calculation. In addition, the chemical changes at the topmost layers have been studied using X-ray photoelectron spectroscopy (XPS) and Fourier transformed infrared spectroscopy (FTIR). Surface topography changes due to the plasma-acting mechanisms have been evaluated with scanning electron microscopy (SEM) and atomic force microscopy (AFM). The obtained results show a remarkable increase in surface free energy from 37.1 mJm−2 up to values of 60 mJm−2 thus indicating the effectiveness of the air plasma treatment. The main advantage of this technology is that the industrial process is continuous, it is easy to establish in current production systems and it does not generate wastes.

1851. Dadbin, S., “Surface modification of LDPE film by CO2 pulsed laser irradiation,” European Polymer J., 38, 2489-2495, (Dec 2002).

The influence of the pulsed CO2 laser irradiation on the surface structure of the LDPE film was investigated. Significant changes were observed on the surface of laser treated films as it was verified by the attenuated total reflectance Fourier transform infrared (ATR–FTIR) spectroscopy, scanning electron microscopy and contact angle-measurement. Formation of polar functional groups onto the LDPE surfaces exhibited by the ATR–FTIR spectra was shown to be strongly dependent on the number of the CO2 laser pulses. The intensity of the polar groups increased with increasing the number of pulses up to two and then slightly decreased at three laser pulses. This was also confirmed with the contact angle measurements in which the sample subjected to two laser pulses showed the highest wettability i.e. the lowest water drop contact angle. The concentration of peroxide groups formed on the surface of the laser treated films was determined quantitatively by UV spectroscopic method using iodide procedure. The latter results showed a similar trend with the results obtained using FTIR spectroscopy.

2062. Sanchis, M.R., V. Blanes, M. Blanes, D. Garcia, and R. Balart, “Surface modification of low density polyethylene (LDPE) film by low pressure O2 plasma treatment,” European Polymer J., 42, 1558-1568, (Jul 2006).

In this work, low pressure glow discharge O2 plasma has been used to increase wettability in a LDPE film in order to improve adhesion properties and make it useful for technical applications. Surface energy values have been estimated using contact angle measurements for different exposure times and different test liquids. In addition, plasma-treated samples have been subjected to an aging process to determine the durability of the plasma treatment. Characterization of the surface changes due to the plasma treatment has been carried out by means of Fourier transformed infrared spectroscopy (FTIR) to determine the presence of polar species such as carbonyl, carboxyl and hydroxyl groups. In addition to this, atomic force microscopy (AFM) analysis has been used to evaluate changes in surface morphology and roughness. Furthermore, and considering the semicrystalline nature of the LDPE film, a calorimetric study using differential scanning calorimetry (DSC) has been carried out to determine changes in crystallinity and degradation temperatures induced by the plasma treatment. The results show that low pressure O2 plasma improves wettability in LDPE films and no significant changes can be observed at longer exposure times. Nevertheless, we can observe that short exposure times to low pressure O2 plasma promote the formation of some polar species on the exposed surface and longer exposure times cause slight abrasion on LDPE films as observed by the little increase in surface roughness.

2073. Kaminska, A., H. Kaczmarek, and J. Kowalonek, “The influence of side groups and polarity of polymers on the kind and effectiveness of their surface modification by air plasma action,” European Polymer J., 38, 1915-1919, (Sep 2002).

The changes of contact angle (θ) and surface free energy (γS) under low-temperature air plasma in the polymers of different chemical structure and polarity (polyethylene, PE; polypropylene, PP; poly(ethylene terephtalate), PET and poly(methyl methacrylate), PMMA) pointed out to the greater effect of short-time plasma action (5–15 s) on these parameters as compared to longer times of exposure.

The non-reversion effect of θ changes caused by plasma in PE and PP suggests that the oxidation processes mainly decide about values in nonpolar polymers. The significantly greater θ changes in PE than those in PP indicate that the side groups present in the main chains impede oxidation of such a polymer by plasma.

The reversion of θ changes in PET and in PMMA, and return of these values to almost the initial ones after 10 min storage proves that the main reason for θ changes in polar polymers is a certain alteration of the chain conformation.

These changes, taking place after longer plasma treatment, suggest that the side ester groups in PMMA retard the above-mentioned conformational transformations. Then, in both kinds of polymers (polar and nonpolar) the structure of macrochain decides about the efficiency of reaction caused by plasma, and at the same time the side groups retard not only the oxidation processes but the conformational changes as well.

2425. Mrad, O., J. Saunier, C. Aymes-Chodur, V. Mazel, V. Rosilio, et al, “Aging of a medical device surface following cold plasma treatment: Influence of low molecular weight compounds on surface recovery,” European Polymer J., 47, 2403-2413, (2011).

The surface of medical devices is of great importance for biocompatibility. Surface properties can evolve with a material treatment, time, and storage conditions. In this work, poly(urethane) catheters sterilised by cold nitrogen plasma treatment, were subjected to air and temperature aging in order to evaluate the influence of humidity and temperature on surface recovery. The surface of catheters was analysed by contact angle measurements and XPS. Faster surface changes upon aging were observed at high temperature (45 °C) and relative humidity (90%). For the commercial poly(urethane) catheters analysed in this work, the importance of the nature and polymorphism of additives added to the polymer (lubricant, antioxidant) in the recovery process was demonstrated. Indeed, DSC and TSC showed that additive transitions (relaxation, melting…) could govern the aging process.

2527. Sarmadi, A.M., T,.H. Ying, and F. Denes, “HMDSO-plasma modification of polypropylene fibers,” European Polymer J., 31, 847-857, (Sep 1995).

A hexamethyldisiloxane (HMDSO)-RF plasma was used to treat polypropylene (PP) fabrics to achieve an inorganic type surface. The properties of the plasma modified PP were investigated through demand wettability and contact angle techniques. ESCA and ATR-IR spectroscopy indicated the presence of Si  O  Si and Si  O  C based structures. The influence of treatment time on the level of deposition and surface atomic composition was established. Plasma induced molecular fragmentation of HMDSO was determined through GC-MS and high resolution MS analyses of the molecular structures produced from recombination of active species, in the cold trap.

2867. Bright, K., and B.A.W. Simmons, “Testing the level of pretreatment of polyethylene film using critical surface tension measurements,” European Polymer J., 3, 219-222, (May 1967).

A method is described for measuring the level of pretreatment of polyethylene films in terms of critical surface tensions. Drops of water-dioxan mixtures of various surface tensions are placed upon the pretreated films and their critical surface tensions assessed from the spreading behaviour of the liquids.

A suggestion is made for using this method as a process control test.

2690. no author cited, “Technical background/Substrate wetting additives,” Evonik Industries, 2007.

1546. no author cited, “Wetting tension,” ExxonMobil Chemical Films Europe, Sep 2002.

2935. Eisby, J., “Dyne & decay: Extrusion, storage impact a film's 'shelf life'; time, humidity, additives contribute to contamination,” FLEXO, 47, 36-38, (Apr 2022).

1168. no author cited, “ATmaP (Accelerated Thermo-Molecular Adhesion Process),” FTS Technologies(http://www.ftstechnologies.com/atmap.htm), 2006.

1335. Hellwig, G.E.H., and A.W. Neumann, “Contact angles and wetting energies pertinent to pigment behaviour,” Farbe und Lack, 73, 823-829, (1967).

1437. Kunz. M., and M. Bauer, “Adhesion to plastic,” Farbe und Lack, 107, 54-62, (2001).

Polyolefins and fluoropolymers have a major drawback: they don't adhere to polymer surfaces properly. If these substrates do have to be coated, however, there are three different approaches to improving adhesion. One is to change the coating, another is to modify the polymer surface, and the third is to apply some kind of adhesion promoter. One successful process which could solve this problem comprises a combination of a plasma pre-treatment and an additional thin acrylated photoinitiator coating. The result is that the purely physical bond gives rise to a covalent chemical bond between the polymer surface and the coating. Further advantages offered by this process are discussed in this article.

2848. no author cited, “Why corona treatment?,” Ferrarini & Benelli,

2850. no author cited, “Plasma and corona surface treatment offer solutions to solve adhesion problems,” Ferrarini & Benelli,

2851. no author cited, “Corona vs. plasma: A comparison between surface treatments,” Ferrarini & Benelli,

2853. no author cited, “Plasma treatment at atmospheric pressure conditions,” Ferrarini & Benelli,

2854. no author cited, “Destructioning the ozone produced by the corona treatment,” Ferrarini & Benelli,

2849. no author cited, “Main applications of plasma treatment,” Ferrarini & Binelli,

1075. Novak, I, D. Lath, S. Florian, M. Dulaj, and J. Sestak, “Some methods for improving the adhesive properties of isotactic polypropylene, I: Modification of polypropylene surface properties via electrical discharge,” Fibres & Textiles in Eastern Europe, 3, 41-42, (Jan 1995).

1662. Melamies, I.A., “A brilliant finish: A new atmospheric plasma pretreatment technology can improve the finish quality on plastics, metal and glass,” Finishing Today, (Mar 2007).

1547. no author cited, “Dyne solution equivalents,” First Ten Angstroms, Aug 2000.

131. Gilbertson, T.J., “The necessity of using pretreated films in converting applications and why inline treating is required,” Flexible Packaging, 2, 36-37, (Apr 2000).

252. Mykytiuk, A., “The 'mystery' of web treating,” Flexible Packaging, 1, 26-30, (Jun 1999).

258. Nolan, M.D., “Treat yourself right: how to avoid unnecessary problems with your in-house treating process,” Flexible Packaging, 1, 35-36, (Jun 1999).

259. Nolan, M.D., “There really is a good side to ozone!,” Flexible Packaging, 3, 26-28, (Sep 2000).

260. Nolan, M.D., “Web treatment - going solventless,” Flexible Packaging, 4, 27-30, (Jan 2002).

275. Opad, J.S., “The theory of surface tension,” Flexible Packaging, 1, 32-33, (Jun 1999).

341. Sigmund, J.J., “A cost-effective solution for controlling ozone emissions from corona treaters,” Flexible Packaging, 2, 21-22, (Aug 2000).

353. Stobbe, B.D., “The problem solver,” Flexible Packaging, 2, 31-32, (Dec 2000).

809. Greig, S., “Corona treatment - an update for running waterbased inks,” Flexible Packaging, 5, 36-39, (May 2003).

 

<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | Next-->