Accudynetest logo

Products available online direct from the manufacturer

ACCU DYNE TEST ™ Bibliography

Provided as an information service by Diversified Enterprises.

3040 results returned
showing result page 45 of 76, ordered by
 

612. no author cited, “For rollers on high-power corona treaters: modifications defy harsh conditions,” Paper Film & Foil Converter, 65, 50, (May 1991).

614. no author cited, “Skip-treating technology fixes seal-failure problem,” Paper Film & Foil Converter, 65, 50, (Mar 1991).

916. Sprecher, T.W., “Testing corona treatments,” Paper Film & Foil Converter, 57, (Nov 1983).

919. Podhajny, R.M., “Evaluating the cure of UV flexographic inks,” Paper Film & Foil Converter, 72, 30, (Jun 1998).

920. Podhajny, R.M., “The tape adhesion test for inks is common but crucial,” Paper Film & Foil Converter, 73, 18, (Jul 1999).

1390. Podhajny, R.M., “Which ink for which substrate?,” Paper Film & Foil Converter, 79, (Apr 2005).

1391. Podhajny, R.M., “Dealing with ink adhesion on high-slip films,” Paper Film & Foil Converter, 76, (Jan 2002).

1564. no author cited, “Converter combines profit with environmental concern,” Paper Film & Foil Converter, 69, 68-70, (Jun 1995).

2193. Donberg, D., “One new treater, many new benefits,” Paper Film & Foil Converter, 75, 0, (Dec 2001).

2194. Podhajny, R.M., “Some things to remember about dynamic surface tension,” Paper Film & Foil Converter, 77, 0, (Apr 2003).

2195. Wolf, R.A., “Atmospheric plasma,” Paper Film & Foil Converter, 77, 44+, (Feb 2003).

2196. Hine, C., “Corona collaboration,” Paper Film & Foil Converter, 77, (Nov 2003).

2197. Podhajny, R.M., “Film wettability not so simple,” Paper Film & Foil Converter, 78, 0, (Apr 2004).

2198. Boyle, E., “Treat 'em right,” Paper Film & Foil Converter, 81, 0, (Jul 2007).

2572. Mikula, M., and M. Cernak, “More effective corona for prepress treatment of polymeric foils,” in Proceedings of the 4th Seminar on Graphic Arts Technology, 82-88, Pardubice, Czech Republic, 2001.

443. Colligan, J.S., W.A. Grant, and J.L. Whitton, eds., Technological Aspects of Surface Treatment and Analysis, Pergamon Press, 1984.

510. Langmuir, I., Collected Works, Pergamon Press, 1961.

1727. Novak, I., and I. Chodak, “Effect of polypropylene UV modification on adhesion to polar polymers,” Petroleum and Coal, 43, 27-28, (2001).

Surface modification of iPP in vapors of phosphoryl chloride under UV irradiation is an effective method for the increase of adhesive properties. Phosphoryl chloride acts as an sensitizer that decomposes under the effect of UV irradiation.

1728. Novak, I., and S. Florian, “Effect of short-time aging on hydrophilicity of discharge plasma pretreated biaxially oriented polypropylene,” Petroleum and Coal, 43, 29-30, (2001).

The adhesion of polypropylene and printing with various dyestuffs represents a serious problem which cannot be solved in satisfactory manner without modification. Because of practical usability, simple manipulation, suitability to continuous modification processes and efficiency the modification by plasma produced by electric discharge at atmospheric pressure in the medium of air oxygen was used. The free surface energy value of discharge-plasma pretreated biaxially oriented polypropylene in the course of short-time aging was determined. The free surface energy of modified polypropylene two weeks after modification exceeds the empirically established value 38 mJ.m-2, that is regarded as a condition of acceptable surface modification of discharge plasma modified polypropylene foils.

2884. Young, T., “An essay on the cohesion of fluids,” Phil Trans Royal Society of London, 95, 65-87, (1805).

951. no author cited, “Surface treatment of polyolefins for decorating and adhesive bonding,” Phillips Petroleum Co., 0.

1484. Hamaker, H.C., “The London van der Waals attraction between spherical particles,” Physica, 4, 1058-1072, (1937).

1285. Ikezaki, K., T. Ishii, and T. Miura, “Thermal influence of vacuum deposition on metallic electrodes on TSC from positively corona-charged polyethylene films,” Physica Status Solidi, 85, 615-618, (Oct 1984).

Thermally stimulated currents (TSC) are studied in the temperature range between 30 and 130°C on positively corona-charged high-density polyethylene films. TSC spectra from these charged films strongly depend on the order of the processes: heat-treatment of the sample films prior to charging and vacuum deposition of metallic electrodes. They also depend on the electrode materials. Observed TSC behaviors are explained in terms of the thermal influence of the vacuum deposition of metallic electrodes. Charge stability of these charged films is also studied for samples with Al and Bi electrodes.

1492. Washburn, E.W., “The dynamics of capillary flow,” Physical Review, 17, 273-283, (1921).

2860. Yonemoto, Y., “Estimating critical surface tension from droplet spreading area,” Physics Letters A, 384, (April 2020).

Critical surface tension (CST) is a measure of solid surface tension and is mainly determined by measuring the contact angle of a droplet on a target solid surface. The concept of CST makes it possible to determine solid surface tension without any unprovable assumptions such as the Fowkes hypothesis. However, it requires somewhat special devices and skills for measuring the contact angle. In this work, we propose a simple method to determine the CST of a solid by measuring the droplet spreading area. This method is developed by combining the conventional CST with a simple analytical droplet model. The difference in estimated CSTs between our method and the conventional one is within 3.0%. Our method enables a quick and simple evaluation of the solid surface tension without special devices for measuring the contact angle.

366. Tirrell, M., “Polymer surface forces,” Physics Today, 40, 65-66, (Jan 1987).

2219. Hall, J.R., C.A.L. Westerdahl, and M.J. Bodnar, “Activated gas plasma surface treatment of polymers for adhesive bonding,” in Picatinny Arsenal Technology Report 4001, 0, Picatinny Arsenal, 1969 (also in J. Applied Polymer Science, Vol. 13, p. 2085-2096, Oct 1969).

Polyethylene, polypropylene, poly(vinyl fluoride) (Tedlar), polystyrene, nylon 6, poly(ethylene terephthalate) (Mylar), polycarbonate, cellulose acetate butyrate, and a poly(oxymethylene) copolymer were treated with activated helium and with activated oxygen. Mechanical strengths of adhesive-bonded specimens prepared from treated and from untreated coupons were compared. Polyethylene (PE) and polypropylene (PP) showed the greatest increases in bond strength. Oxygen and helium were both effective with polyethylene, but polypropylene showed no improvement when treated with activated helium. The results with excited helium parallel the effects of ionizing radiation on these two polymers, as does the appearance of unsaturation bands in the infrared (965 cm−1 in PE, and 887 and 910 cm−1 in PP). Active nitrogen produced excellent bond strength with polyethylene but not with polypropylene. Of the remaining polymers examined, Tedlar, polystyrene, and nylon 6 showed the greatest improvement in bondability after treatment, and Mylar showed moderate improvement. Polycarbonate, cellulose acetate butyrate, and the poly(oxymethylene) copolymer gave approximately two-fold increases in lap-shear bond strength. In several cases, significant differences in response to time of treatment and type of excited gas were found.

2048. Hansen, C.M., “New simple method to measure polymer surface tension,” Pigment & Resin Technology, 27, 374-378, (1998).

Surface tensions of polymers can be accurately determined by observing whether droplets of liquids spontaneously spread or not. The polymer surface tension will be higher than the surface tension of a liquid which spreads, and lower than that of a liquid which remains as a droplet.

2917. Janule, V.P., “On-site surface and wetting tension measurements of water-based coatings and substrates,” Pigment & Resin Technology, 24, 7-12, (1995).

1565. no author cited, “Watt density: What is the formula to calculate watt density?,” Pillar Technologies,

1169. Liu, Y., and D. Lu, “Surfcae energy and wettability of plasma-treated polyacrylonitrile fibers,” Plasma Chemistry and Plasma Processing, 26, 119-126, (Apr 2006).

Polyacrylonitrile fibers were treated with a nitrogen glow-discharge plasma. The surfaces of untreated and treated fibers were examined with contact angle measurements, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Surface energy calculations of the fibers were carried out from contact angle measurements using the relationships developed by Fowkes. It is found that plasma treatment causes a reduction in water contact angle on the fiber surfaces. The dispersion component of surface energy changes slightly, while the polar component is increased significantly from 14.6 mN/m to 58.7 mN/m and the total surface energy increase is 139%. The increase of surface energy is mainly caused by the introduction of hydrophilic groups on the fiber surfaces after plasma treatment.

1202. Chen, J., and J.H. Davidson, “Electron density and energy distributions in the positive DC corona: Interpretation for corona-enhanced chemical reactions,” Plasma Chemistry and Plasma Processing, 22, 199-224, (Jun 2002).

Electrons produced in atmospheric pressure corona discharges are used for a variety of beneficial purposes including the destruction of gaseous contaminants, and surface treatment. In other applications, such as electrostatic precipitators and photocopiers, unintended reactions such as ozone production and deposition of silicon dioxide are detrimental. In both situations, a kinetic description of the electron distribution in the corona plasma is required to quantify the chemical processes. In this paper, the electron density and energy distributions are numerically determined for a positive dc corona discharge along a wire. The electron density distribution is obtained from the 1-D charge carrier continuity equations and Maxwell's equation. The non-Maxwellian electron kinetic energy distribution is determined from the Boltzmann equation. The effects of wire size (10-1000 μm) and current density (0.1–100 μA/cm of wire) on number density and energy distribution of electrons are presented. With increasing current, the electron density increases, but the thickness of the plasma and the electron energy distribution are not affected. Smaller electrodes produce thinner plasmas and fewer, but more energetic electrons, than larger wires. The effect of electrode size on the electron-impact chemical reaction rate is illustrated by the rates of dissociation and ionization of oxygen and nitrogen.

1272. Chen, J., and J.H. Davidson, “Ozone production in the negative DC corona: The dependence of discharge polarity,” Plasma Chemistry and Plasma Processing, 23, 501-518, (Sep 2003).

The rate of production and the spatial distribution of ozone in the negative DC corona discharge are predicted with a numerical model. The results are compared to prior experimental data and to results previously presented by the authors for the positive corona discharge. In agreement with experimental data, ozone production rate in the negative corona is an order of magnitude higher than in the positive corona. The model reveals that this significant difference is due to the effect of discharge polarity on the number of energetic electrons in the corona plasma. The number of electrons is one order of magnitude greater and the chemically reactive plasma region extends beyond the ionization region in the negative corona. The paper also extends our prior modeling effort to lower velocities where the Joule heating reduces ozone production. The magnitude of the reduction is characterized by a new dimensionless parameter referred to as the electric Damkohler's third number(DaIII–e).

1375. Kogelschatz, U., “Dielectric-barrier discharges: Their history, discharge physics, and industrial applications,” Plasma Chemistry and Plasma Processing, 23, 1-46, (Mar 2003).

The capacity of a cold atmospheric-pressure air plasma (CAAP) device for advanced first aid is presented. Using swine as an animal model, two trials: 1) a large, curved cut in hindquarters area and 2) amputation of a front leg, were performed. Cold atmospheric-pressure air plasma effluent, which carries reactive oxygen species (ROS) atomic oxygen (OI), is applied for wound treatments. Swift hemostasis of the wounds by the CAAP treatment was demonstrated. The pressure applied by a finger on the cut arteries in trial 1 and the tourniquet applied in trial 2 could be removed immediately after the treatment and there was no re-bleed in both cases. CAAP hemostasis mechanism was explored via in-vitro tests. The tests on sodium citrate mixed blood-droplet samples show that 1) the heat delivered by the CAAP has no impact on the observed clot formation, 2) plasma effluent activates platelets to promote coagulation state and cascade, and 3) the degree of clotting increases with the total amount of applied OI by means of the CAAP effluent. It took only 16 s of the CAAP treatment to reach full clotting, which was considerably shortened from the natural clotting time of about 25 minutes. The tests on smeared blood samples show that the reduction of the platelet count and the increase of RBC count are proportional to the amount of applied OI. A plausible CAAP hemostasis mechanism is concluded from the in vitro test results and the animal model trials.

820. Zenkiewicz, M., J. Richert, P. Rytlewski, and K. Moraczewski, “Some effects of corona plasma treatment of polylactide/montmorillonite nanocomposite films,” Plasma Process and Polymers, 6, S387-S391, (Jun 2009).

Influence of the unit energy (Eu) of corona discharge used for modification of pure polylactide (PLA) and polylactide nanocomposite (PLAC) containing 5 wt% of an aluminosilicate nanofiller (Cloisite 30B) on water (ΘW) and diiodomethane (ΘD) contact angles as well as on surface free energy (γs) of these polymers was studied. ΘW and ΘD as advancing contact angles were measured with use of a goniometer while γs was calculated by the Owens–Wendt method. It was found that ΘW increased with the rising Eu while ΘD remained approximately constant. Assuming Eu = const, it could be stated that the increase in γs was much more evident for PLA than for PLAC. This increase resulted practically from the change in the polar component of γs because the dispersive component for the two materials only slightly decreased with increase in Eu.

804. Jacobs, T., R. Morent, N. De Geyter, and C. Leys, “Effect of He/CF4 DBD operating parameters on PET surface modification,” Plasma Processes and Polymers, 6, S412-S418, (Jun 2009).

In this paper, a dielectric barrier discharge (DBD) operated at (sub)atmospheric pressure in a 95/5% He/CF4 mixture is employed to increase the hydrophobicity of a poly(ethylene terephthalate) (PET) film. This paper studies the influence of different operating parameters on the hydrophobic properties of the PET film using contact angle measurements. Results clearly show that the hydrophobicity of the PET film is only enhanced when using large gas flows. Moreover, this work demonstrates that operating pressure and discharge power have a significant influence on the rate of plasma modification as well as on the uniformity of the plasma treatment. Also important to mention is that no ageing effect is observed. As a result, one can conclude that the utilized DBD is an efficient tool to create stable, hydrophobic PET surfaces.

830. Borges, J.N., T. Belmonte, J. Guillot, D. Duday, M. Moreno-Couranjou, P. Choquet, and H.-N. Migeon, “Functionalization of copper surfaces by plasma treatments to improve adhesion of epoxy resins,” Plasma Processes and Polymers, 6, S490-S495, (Jun 2009).

Adhesion of epoxy resins on copper foils for printed circuit board (PCB) applications is improved by nearly a factor of 5, using surface cleaning and deposition of a 15-nm-thick film in a low-pressure remote plasma-enhanced chemical vapor deposition process. The cleaning pretreatment, using an N2–O2 oxidizing gas mixture with moderate heating (343 K), gives the best results. This pretreatment removes the carbonaceous contaminants present on the topmost surface of the sample and slightly oxidizes the copper into CuO. This oxide is then reduced during the deposition treatment, presumably by reaction with the aminopropyltrimethoxysilane (APTMS) precursor. The surface roughness is unchanged after treatment, thereby showing that the improvement of the copper/epoxy adhesion is only due to the chemistry of the plasma coating. Applying these results to dielectric barrier discharges allows us to achieve the same level of adhesion, which, therefore, does not depend on the process.

1430. Vandencasteele, N., H. Fairbrother, and F. Reniers, “Selected effect of the ions and the neutrals in the plasma treatment of PTFE surfaces: An OES-AFM-contact angle and XPS study,” Plasma Processes and Polymers, 2, 493-500, (Jul 2005).

Polytetrafluoroethylene (PTFE) surfaces were treated by oxygen and nitrogen species generated either in a remote (filtered) RF plasma or in an ion gun. In the first case, the majority of the species reaching the surface are neutral molecules, whereas in the second case, ions are the reactive agent. In this paper, we show that ions alone do not lead to a significant grafting of new functions on the PTFE surface. The XPS analysis of the treated surface show identical behaviour with oxygen and nitrogen ion treatment, and the evolution of the C1s peak shape suggest a progressive sputtering, leading to defluorination of the surface. The nitrogen plasma treatment lead to a subsequent grafting that is attributed mostly to the “excited neutrals”, but we suggest here that the ions could play a significant role in the activation process of the surface. The exposure of PTFE to an oxygen plasma lead to chemical etching of the surface, different from the physical sputtering induced by the ion treatment, that lead to a super-hydrophobic behavior of the surface attributed to an increase in the surface roughness.

1579. d'Agostino, R., P. Favia, C. Oehr, and M.R. Wertheimer, “Low-temperature plasma processing of materials: past, present, and future,” Plasma Processes and Polymers, 2, 7-15, (2005).

Plasma, considered as the fourth state of matter, is playing a key role as a modern discipline. Plasma processing is drawing attention from various technology sectors such as microelectronics, automotive, and surface modifications of polymers. Some examples of additional new applications include functional coatings for architectural glass, mercury-free lamps, plasma-treated packaging for food, beverage and pharmaceutical industries, as well as nanomaterials. With the emergence of all new technological applications from basic research in academic, industrial, or government laboratories, plasma is set to have a brilliant future.

1639. Tyczkowski, J., J. Zielinski, A. Kopa, I. Krawczyk, and B. Wozniak, “Comparison between non-equilibrium atmospheric-pressure and low-pressure plasma treatments of poly(styrene-butadiene-styrene),” Plasma Processes and Polymers, 6, S419-S424, (Jun 2009).

Low-pressure plasma generated in a typical parallel plate reactor and atmospheric pressure plasma produced by a plasma needle were utilized to modify the surface of poly(styrene–butadiene–styrene) (SBS) elastomers. An RF discharge (13.56 MHz) in helium was used in the both cases. The SBS surfaces were investigated by T-peel tests, contact-angle measurements, and IRS–FTIR spectroscopy. It has been found that such plasma treatments drastically improve the strength of adhesive-bonded joints between the SBS surfaces and polyurethane adhesives, however, the plasma needle operation has turned out to be more effective. The molecular processes proceeding on the SBS surfaces have been briefly discussed.

 

<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | Next-->