Accudynetest logo

Products available online direct from the manufacturer

ACCU DYNE TEST ™ Bibliography

Provided as an information service by Diversified Enterprises.

3040 results returned
showing result page 58 of 76, ordered by
 

2507. Carlsson, C.M.G., and G. Strom, “Adhesion between plasma-treated cellulosic materials and polyethylene,” Surface and Interface Analysis, 17, 511-515, (Jun 1991).

Filter paper and greaseproof paper have been exposed to hydrogen or oxygen plasma. The paper surface composition was determined by ESCA measurements. The unmodified and modified papers then were laminated with polyethylene and the adhesive strength was measured. The hydrogen plasma treatment reduces the cellulose surface and forms low-molecular-weight degradation products. It is shown that the reduction of the cellulose surface has no influence on the adhesion, but the degradation products strongly decrease the adhesion. Oxygen plasma treatment increases adhesion, probably by removing low-molecular-weight wood resin from the surface and by forming covalent bonds across the interface.

2531. Vesel, A., I. Junkar, U. Cvelbar, J. Kovac, and M. Mozetic, “Surface modification of polyester by oxygen- and nitrogen-plasma treatment,” Surface and Interface Analysis, 40, 1444-1453, (Nov 2008).

In this paper, we present a study on the surface modification of polyethyleneterephthalate (PET) polymer by plasma treatment. The samples were treated by nitrogen and oxygen plasma for different time periods between 3 and 90 s. The plasma was created by a radio frequency (RF) generator. The gas pressure was fixed at 75 Pa and the discharge power was set to 200 W. The samples were treated in the glow region, where the electrons temperature was about 4 eV, the positive ions density was about 2 × 1015 m−3, and the neutral atom density was about 4 × 1021 m−3 for oxygen and 1 × 1021 m−3 for nitrogen. The changes in surface morphology were observed by using atomic force microscopy (AFM). Surface wettability was determined by water contact angle measurements while the chemical composition of the surface was analyzed using XPS. The stability of functional groups on the polymer surface treated with plasma was monitored by XPS and wettability measurements in different time intervals. The oxygen-plasma-treated samples showed much more pronounced changes in the surface topography compared to those treated by nitrogen plasma. The contact angle of a water drop decreased from 75° for the untreated sample to 20° for oxygen and 25° for nitrogen-plasma-treated samples for 3 s. It kept decreasing with treatment time for both plasmas and reached about 10° for nitrogen plasma after 1 min of plasma treatment. For oxygen plasma, however, the contact angle kept decreasing even after a minute of plasma treatment and eventually fell below a few degrees. We found that the water contact angle increased linearly with the O/C ratio or N/C ratio in the case of oxygen or nitrogen plasma, respectively. Ageing effects of the plasma-treated surface were more pronounced in the first 3 days; however, the surface hydrophilicity was rather stable later. Copyright © 2008 John Wiley & Sons, Ltd.

2533. Vesel, A., M. Mozetic, and A. Zalar, “XPS characterization of PTFE after treatment with RF oxygen and nitrogen plasma,” Surface and Interface Analysis, 40, 661-663, (Apr 2008).

A study on surface modification of extended PTFE (polytetrafluoroethylene) foil after treatment in oxygen and nitrogen plasma is presented. PTFE was exposed to a weakly ionized, highly dissociated RF plasma with a high density of neutral atoms. The gas pressure was 75 Pa and the discharge power was 200 W. The appearance of the functional groups on the sample surface was determined by using high-resolution XPS. The results showed that oxygen plasma treatment did not cause any noticeable changes in the surface composition, while after nitrogen plasma treatment new functional groups were detected on the surface. Copyright © 2008 John Wiley & Sons, Ltd.

2534. Wang, M.-J., Y.-I. Chang, and F. Poncin-Epaillard, “Acid and base functionalities of nitrogen and carbon dioxide plasma-treated polystyrene,” Surface and Interface Analysis, 37, 348-355, (Mar 2005).

The choice of plasma gas can determine the interaction between material and plasma and therefore the applications of the treated materials. Nitrogen plasma can integrate functional groups such as primary amines and carbon dioxide plasma can incorporate carboxylic groups on the surface of polymers. For specific adhesion such as bio-adhesion, polar groups must be attached to the surface to enhance bio-film formation but the acidic or basic character also controls the adhesion mechanism.

Nitrogen and carbon dioxide plasmas are chosen to treat the surface of polystyrene and to show the effects of different functionalizations, i.e. attachment of acid or basic groups and degradation are compared in the present work.

Nitrogen-containing plasma induces mainly weak degradation at a rate of ∼0.13 µg cm−2s−1. The roughness of the treated surface remains mostly unchanged. Functionalization leads to amino group attachment at a concentration of 1.2 sites nm−2. We found that carbon dioxide plasma treatment shows more drastic degradation with a rate three times higher than that of nitrogen plasma and can create more functional groups (4.5 sites nm−2) at mild plasma treatment. However, the roughness of the surface is altered. In both cases the aromatic groups are degraded through the plasma treatment (again this is more evident with the CO2 plasma) and the induced functionalization was shown to be quick (the upper monolayer of polystyrene film can be functionalized rapidly). Copyright © 2005 John Wiley & Sons, Ltd.
https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/sia.2029

1693. Etzler, F.M., J.F. Bobalek, and M.A. Weiss, “Surface free energy of paper and inks: Printability issues,” in Proceedings from the TAGA International Conference, 225-237, TAGA, 1993.

1668. Roth, J.R., Z. Chen, D.M. Sherman, F. Karakaya, and P. P.-Y. Tsai, “Plasma treatment of nonwovens and films for improved wettability and printability,” in 10th Annual International TANDEC Nonwovens Conference Proceedings, TANDEC, 2000.

1669. Simor, M., J. Rahel, D. Kovacik, A. Zahoranova, M. Mazur, and M. Cernak, “Atmospheric-pressure plasma treatment of nonwovens using surface dielectric barrier discharges,” in 12th Annual International TANDEC Nonwovens Conference Proceedings, TANDEC, 2002.

Preliminary results are presented on hydrophilization, grafting, and metal plating of PP nonwovens using novel types of atmospheric-pressure low-temperature plasma sources, namely the "Surface Discharge Induced Plasma Chemical Processing" source and the plasma source based on a coplanar diffuse surface discharge. The plasma sources generate a thin (~ 0.3 mm) surface layer of plasma and are capable of meeting the basic on-line production requirements for surface activation and permanent hydrophilization of light-weight nonwovens.

1670. Roth, J.R., and T.A. Bonds, “The application of a one atmosphere uniform glow discharge plasma (OAUGDP) to roll-to-roll surface energy enhancement and plasma chemical vapor deposition (PCVD) on films and fabrics,” in 15th Annual International TANDEC Nonwovens Conference Proceedings, TANDEC, Apr 2006.

1679. Roth, J.R., L.C. Wadsworth, P.D. Spence, P.P.-Y. Tsai, and C. Liu, “One atmosphere glow discharge plasma for surface treatment of nonwovens,” in Proceedings of the 3rd Annual TANDEC Conference on Meltblowing and Spunbonding Technology, TANDEC, Nov 1993.

1680. Tsai, P.P.-Y., L. Wadsworth, P.D. Spence, and J.R. Roth, “Surface modifications of nonwoven webs using one atmosphere glow discharge plasma to improve web wettability and other textile properties,” in Proceedings of the 4th Annual TANDEC Conference on Meltblowing and Spunbonding Technology, TANDEC, Nov 1994.

1681. Roth, J.R., Z. Chen, D.M. Sherman, and F. Karakaya, “Plasma treatment of nonwovens and films for improved wettability and printability,” in Proceedings of the 10th Annual TANDEC Conference on Meltblowing and Spunbonding Technology, TANDEC, Nov 2000.

995. Greig, S., P.B. Sherman, R. Pitman, and C. Barley, “Adhesion promoters: Corona flame and ozone - a technology update,” Presented at TAPPI Polymers, Laminations, & Coatings Conference Proceedings 2000, Aug 2000.

2937. no author cited, “Standard T565: Contact angle of water droplets on corona-treated polymer film surfaces,” TAPPI, 1996.

15. Adelsky, J., “Effects of corona pre-treatment on surface characteristics of oriented polypropylene film,” TAPPI J., 72, 181-184, (Sep 1989).

22. Biggs, D., and R. Fredricks, “A study of wetting tension solutions,” TAPPI J., 77, 94-99, (Aug 1994).

58. Chen, B.-L., “Surface properties of corona treated polyethylene films containing N-(2-hydroxyethyl) erucamide as slip agent for enhanced adhesion of aqueous ink,” TAPPI J., 81, 185-189, (Aug 1998).

84. Dinelli, B., J.C. Jammet, and K. Kuusipalo, “Interactions between melt nature and pretreatments: key to good adhesion,” TAPPI J., 79, 189-193, (Sep 1996).

89. Ealer, G.E., S.B. Samuels, and W.C. Harris, “Characterization of surface-treated polyethylene for water-based ink printability,” TAPPI J., 73, 145-150, (Jan 1990).

92. Fay, M.J., and T.D. Allston, “Characterization of vapor deposited aluminum coatings on oriented polypropylene films,” TAPPI J., 77, 125-129, (Apr 1994).

152. Hansen, M.H., M.F. Finlayson, M.J. Castille, and J.D. Goins, “The role of corona discharge treatment in improving polyethylene-aluminum adhesion: an acid-base perspective,” TAPPI J., 76, 171-177, (Feb 1993).

164. Huang, T., and P. LePoutre, “Effect of basestock surface structure and chemistry on coating holdout and coated paper properties,” TAPPI J., 81, 145-152, (Aug 1998).

201. Krueger, J.J., and K.T. Hodgson, “Single-fiber wettability of highly sized pulp fibers,” TAPPI J., 77, 83-88, (Jul 1994).

220. LePoutre, P., M. Inoue, and J. Aspler, “Wetting time and critical surface energy,” TAPPI J., 68, 86-87, (Dec 1985).

226. Lundqvist, A., L. Odberg, and J.C. Berg, “Surface characterization of non-chlorine bleached pulp fibers and calcium carbonate coatings using inverse gas chromatography,” TAPPI J., 78, 139-142, (May 1995).

229. Markgraf, D.A., “Determining the size of a corona treating system,” TAPPI J., 72, 173-178, (Sep 1989).

256. Neumann, R.D., “Paper surface: beyond appearance,” TAPPI J., 80, 14-16, (Jul 1997).

310. Sarmadi, M., and F. Denes, “Surface modification of polymers under cold plasma conditions,” TAPPI J., 79, 189-204, (Aug 1996).

311. Savolainen, A., J. Kuusipalo, and H. Karhuketo, “Extrusion coating: corona after-treatment of LDPE coating,” TAPPI J., 73, 133-139, (Jul 1990).

359. Sun, Q.C., D. Zhang, and L.C. Wadsworth, “Corona treatment on polyolefin films,” TAPPI J., 81, 177-183, (Aug 1998).

414. Aspler, J.S., and M.B. Lyne, “The dynamic wettability of paper: influence of surfactant type on improved wettability of newsprint,” TAPPI J., 67, 96-99, (Oct 1984).

531. Maust, M.J., “Correlation of dispersion and polar surface energies with printing on plastic films with low VOC inks,” TAPPI J., 76, 95-97, (May 1993).

538. Morris, B., “Factors influencing adhesion in coextruded structures,” TAPPI J., 75, 107-111, (Aug 1992).

539. Nicastro, L.C., R.W. Keown. J.S. Paik, and A.B. Metzner, “Effect of storage temperature on the heat sealability of polypropylene film,” TAPPI J., 76, 175-178, (Aug 1993).

540. Nishimura, H., T. Nakao, T. Uehara, and S. Yano, “Improvement of paperboard mechanical properties through corona-discharge treatment,” TAPPI J., 73, 275-276, (Oct 1990).

579. Spell, H.L., and C.P. Christensen, “Surface analysis of corona treated polyethylene: bonding, printability problems,” TAPPI J., 62, 77-81, (1979).

584. Tsai, P.P.-Y., G.-W. Qin, and L.C. Wadsworth, “Theory and techniques of electrostatic charging of melt-blown nonwoven webs,” TAPPI J., 81, 274-278, (Jan 1998).

928. Markgraf, D.A., “Practical aspects of determining the intensity of corona treatment,” TAPPI J., 68, (Feb 1985).

1470. Crolius, V.G., W.E. Eberling, and R.C. Parsons, “The effect of processing variables on the adhesion strength of polyethylene coated aluminum foil,” TAPPI J., 45, 351-356, (May 1962).

2431. Tuominen, M., J. Lahti, and J. Kuusipalo, “Effects of flame and corona treatment on extrusion coated paper properties,” TAPPI J., 10, 29-36, (Oct 2011).

20. Bezigian, T., “The effect of corona discharge onto polymer films,” in 1991 Polymers, Laminations and Coatings Conference Proceedings, 203-208, TAPPI Press, Aug 1991.

 

<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | Next-->