Accudynetest logo

Products available online direct from the manufacturer

ACCU DYNE TEST ™ Bibliography

Provided as an information service by Diversified Enterprises.

3040 results returned
showing result page 51 of 76, ordered by
 

592. Waddington, S., and D. Briggs, “Adhesion mechanisms between polymer coatings and polypropylene studied by X-ray photoelectron spectroscopy and secondary ion mass spectrometry,” Polymer Communications, 32, 506-508, (1991).

2035. Masse, P., J.P. Cavrot, P. Francois, J.M. Lefebvre, and B. Escaig, “Adhesion improvement of high modulus polyethylene fibers by surface plasma treatment: Evaluation by pull-out testing,” Polymer Composites, 15, 247-251, (Jun 1994).

1232. Matsunaga, M., and P.J. Whitney, “Surface changes brought about by corona discharge treatment of polyethylene film and the effect on subsequent microbial colonisation,” Polymer Degradation and Stability, 70, 325-332, (2000).

Microbial colonisation of synthetic plastic films is normally slow, which affects the total period of biodegradation. Correlation between the modified surface condition and the ability for microorganisms to colonise low-density polyethylene (LDPE) film was studied. Corona discharge treatment was applied to obtain enriched and activated surface condition of LDPE film. It was found from water contact angle and FTIR spectrum evaluations that surface energy was significantly increased due to production of free radicals. Stabilised oxidised LDPE surface was also obtained by further exposure to the corona which gave more suitable condition for subsequent colonisation. Results were compared with UV irradiated (photo-oxidised) LDPE films. Colonisation of corona discharged and UV treated LDPE films were tested in the laboratory environment using known fungal isolates and in a natural compost environment. More active microbial colonisation was observed in all cases for corona discharged and UV treated LDPE films. Far longer UV exposure was required to have the same physicochemical and biological effect as the corona discharge treatment.

1440. Duca, M.D., C.L. Plosceanu, and T. Pop, “Surface modifications of polyvinylidene fluoride (PVDF) under radiofrequency (RF) argon plasma,” Polymer Degradation and Stability, 61, 65-72, (1998).

Recent progress in the correlation of contact angles with solid surface tensions are summarized. The measurements of meaningful contact angles in terms of surface energetics are also discussed. It is shown that the apparent controversy with respect to measurement and interpretation of contact angles are due to the fact that some (or all) of the assumptions made in all energetic approaches [7–14] are violated when contact angles are measured and processed. For a large number of polar and non-polar liquids on different solid surfaces, the values of γ1v cos θ are shown to depend only on γ1v and γsv when the appropriate experimental techniques and procedures are used. An equation which follows these experimental patterns and which allows the determination of solid surface tensions from contact angles is discussed.

1583. Friedrich, J., I. Loeschcke, H. Frommelt, et al, “Aging and degradation of poly(ethylene-terephthalate) in an oxygen plasma,” Polymer Degradation and Stability, 31, 97-114, (1991).

The ageing of thin PET films in an oxygen plasma was investigated. After several hours exposure a large decrease in mechanical strength was observed. Plasma particle bombardment, chemical reactions and the plasma vacuum UV radiation cause extensive chemical and structural changes. The chemical reactions leading to the ageing process were identified.

2503. Bismarck, A., W. Brostow, R. Chiu, H.E.H. Lobland, and K.K.C. Ho, “Effects of surface plasma treatment on tribology of thermoplastic polymers,” Polymer Engineering & Science, 48, 1971-1976, (Oct 2008).

We have subjected polycarbonate (PC), low density polyethylene (LDPE), polystyrene (PS), polypropylene (PP), and Hytrel® (HY, a thermoplastic elastomer) to atmospheric pressure oxygen plasma treatment for varying amounts of time. Effects of the treatment have been evaluated in terms of the water wetting angle, dynamic friction, scratch resistance, and sliding wear. Although PS, PP, and HY do not undergo significant tribological changes as a result of the interaction with plasma, PC and LDPE show more pronounced and useful effects, such as a lowering of dynamic friction in PC and wear reduction in LDPE. These results can be explained in terms of the changes in chemical structures and increase of hydrophilicity. Based on the effects of oxygen plasma treatment on PC and LDPE, these two polymers have been subjected to longer oxygen plasma treatments and to argon, nitrogen, and air plasmas. Resulting effects on friction and scratch resistance are compared to determine the mechanisms responsible for the various surface behaviors. Chemical surface modification—as represented by changing contact angles—contributes to the tribological responses. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers

2920. Das. B., D. Chakrabarty, C. Guha, and S. Bose, “Effects of corona treatment on surface properties of co-extruded transparent polyethylene film,” Polymer Engineering & Science, 61, 1449-1462, (2021).

3036. Hayashida, H., F. Ishibashi, H. Takahata, T. Nishin, Y. Gotoh, and Y. Sato, “New process for producing an extrusion laminated film without any chemical primer - non anchor coating extrusion laminating process,” Polymer Engineering & Science, 2018, (Apr 2004).

50. Carley, J.F., and P.T. Kitze, “Corona-discharge treatment of polyethylene films, I. Experimental work and physical effects,” Polymer Engineering and Science, 18, 326-334, (Mar 1978).

Corona treatment of films, mainly polyethylene, was studied at commercial levels in a small continuous treater. Degree of treatment was characterized by measuring polar and dispersion components of surface energy, ASTM Wipe and ASTM Adhesion Ratio (“peel adhesion”). The chief factors studied were corona current, applied frequency, web speed, dielectric thickness and air-gap thickness between electrode and film. Other factors less intensively investigated were type of film, film additives, aging time after treatment, humidity and corona atmosphere. The polar component of surface energy, γ, is the key to understanding the changes in adhesive behavior of the films during treatment. We found that, for the equipment used, γ is accurately given by the equation

where D = dielectric thick ness and G = air gap, both in mils; S = web speed, ft/min; I = corona current, ma, and γ is in dyne-cm/cm2. A similarly structured equation describes ASTM Wipe. Using measured surface-energy components for the pressure-sensitive tape used in the peel adhesion test, it was possible to calculate an adhesion interaction for each film on which peel adhesion was measured and to show that it closely correlates with peel strength. Humidity changes in the moderate-humidity range, number of electrodes used and corona frequency had little effect on properties. Slip additives inhibited development of adhesion until treatment levels became high; adhesion properties gradually diminished upon aging of films stored at ambient conditions.

184. Kaelble, D.H., “Interface degradation processes and durability,” Polymer Engineering and Science, 17, 474-477, (1977).

This paper discusses a recently developed surface energetics criterion for adhesive bonding and fracture and its applications in such diverse areas as structural adhesive bonding, fiber reinforced composites, biomaterials development, and lithographic printing. The theoretical relations describe systematic methods for the surface energy analysis of solid adhesive and adherend surfaces. The surface tension properties for the adhesive and adherend can then be introduced into a modified Griffith fracture mechanics relation to obtain predictions of bond strength under varied conditions of liquid or gas phase immersion such as water and dry air.

254. Nakayama, Y., F. Soada, and A. Ishitani, “Surface analysis of plasma-treated poly(ethylene terephthalate) film,” Polymer Engineering and Science, 31, 812-817, (1991).

Surface structures of poly(ethylene terephthalate) films produced by stretching after Ar plasma-treatment were analyzed by X-ray photoelectron spectroscopy, combined with a gas chemical modification technique, secondary ion mass spectrometry, and transmission electron microscopy. The formation of ultra-fine protrusions that produce good slip and a smooth film surface after the stretching procedure was confirmed. The height of the protrusions was almost the same as the thickness of the osmic acid-dyeable layer. The thickness of the modified layer was found to change according to the Ar pressure of the plasmatreatment. Carboxylic and hydroxyl groups produced by the plasma-treatment were quantified. The formation of these functional groups can explain good adhesion of the film.

355. Stradal, M., and D.A.I. Goring, “The effect of corona and ozone treatment on the adhesion of ink to the surface of polyethylene,” Polymer Engineering and Science, 17, 38-41, (1977).

Low density polyethylene sheet was subjected to treatment by corona discharge in oxygen, nitrogen, helium and argon; in addition some sheets were treated with ozone gas. The bond strength between two similarly treated sheets was then measured using a commercial flexographic ink as an adhesive. The results showed that although surface oxidation improved both the ink adhesion and the wetting properties of polyethylene it is not a necessary prerequisite for good bonding. When the sheet was subjected to electrical discharge in nitrogen, argon or helium, considerable enhancement of ink adhesion was obtained without any detectable change in the surface chemistry of the polymer. The results indicate that ink adhesion after treatment in various gases follows closely the trends established previously in corona-induced autohesion of polyethylene. This suggests that the mechanism of bonding is similar in the two cases.

371. van Ness, K.E., “Surface tension and surface entropy for polymer liquids,” Polymer Engineering and Science, 32, 122-129, (Jan 1992).

A cell theory for the prediction of the surface tension of polymer liquids is modified to include an entropic effect due to molecular asymmetry. Also considered is the extent of the effect of the preservation of connectivity in the vicinity of the surface upon the potential energy zero term due to missing nearest neighbors of orders greater than one. Theory and experiment are in good agreement without an adjustable surface parameter.

699. Espana, J.M., D. Garcia, L. Sanchez, J. Lopez, and R. Balart, “Modification of surface wettability of sodium ionomer sheets via atmospheric plasma treatment,” Polymer Engineering and Science, 52, 2573-2580, (2012).

In this study, atmospheric plasma treatment has been used to modify the wetting properties of ethylene-methacrylic acid sodium ionomer. The effects of the plasma treatment on surface properties of this ionomer have been followed by contact angle measurements, Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and atomic force microscopy (AFM). With the use of these techniques, the overall effects on activation–functionalization and surface topography changes have been determined in terms of the processing parameters of the atmospheric plasma treatment (rate and distance). The obtained results show a remarkable increase of the wetting properties and optimum balanced behavior is obtained for atmospheric plasma treatment with a rate of 100 mm/s and a distance of 6 mm; in this case, surface free energy is increased from 33 mJ/m2 (untreated ionomer) up to 62 mJ/m2, maintaining good transparency. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers

849. Park, S.-C., S.-K. Koh, and K.D. Pae, “Effects of surface modification by Ar+ irradiation on wettability of surfaces of poly(ethylene terephthalate) films,” Polymer Engineering and Science, 38, 1185-1192, (Jul 1998).

Surfaces of poly(ethylene terephthalate); PET, films were irradiated with Ar+ at 1 keV using various ion doses (ID) from 1014 to 1017 ions/cm2 (isc) with and without an O2 environment. The wettability of the modified surfaces of PET was determined by measuring the contact angle between water droplets and the modified surfaces. The modified surfaces were also characterized by AFM (atomic force microscopy) and XPS (X-ray photoelectron spectroscopy) for changes in the surface morphology, and the chemical composition and molecular structure, respectively. The contact angle decreased from 70° for unmodified surfaces to 45° for modified surface with ID = 1014 isc without O2 and remained relatively constant with higher ID. The contact angle, however, reached a minimum value of 8° for modified surfaces with ID = 1016 isc with O2. The improved wettability may be due to a combination of the formation of hydrophilic groups, chemical and molecular structural changes, physical structural or morphological changes, and increased roughness of the surface. The wettability of the modified surfaces also depended on the time of exposure to air. The wettability worsened with exposure time to air, but was revived by immersing the films into water. Possible mechanisms for the change of the wettability of the modified surfaces are given.

960. Jingxin, L., H. Guangjian, L. Qiman, and L. Xiaohong, “Surface structure and adhesive properties of biaxially oriented polypropylene film grafted with poly(acrylic amide) using corona discharge,” Polymer Engineering and Science, 41, 782-785, (May 2001).

Corona discharge was explored as a means of forming chemically active sites on the surface of biaxially oriented polypropylene (BOPP) film. The active species formed in air was used to induce graft copolymerization of acrylic amide (AAM) in aqueous solution. The surface structure, hydrophilicity and adhesion of the grafted BOPP film were characterized by the extent of grafting, electron spectroscopy for chemical analysis (ESCA), scanning electron microscopy (SEM), peel strength and contact angle measurements. Surface graft-copolymerization of AAM onto BOPP film by corona discharge in air can be carried out with high efficiency. With increasing copolymerization time, the degree of grafting of AAM onto BOPP increases. The degree of grafting achieved a relatively high value of 2.13 wt% for the conditions of 1 min corona discharge and a copolymerization reaction time of 2.5 hr in 20% AAM aqueous solution at 70°C. After corona discharge grafting, the contact angle of water on the BOPP film decreased and the peel strength increased compared with those for ungrafted BOPP film. The hydrophilicity and adhesion of BOPP were improved by surface graft copolymerization with AAM induced by corona discharge.

978. Zhang, D., Q. Sun, and L.C. Wadsworth, “Mechanism of corona treatment on polyolefin films,” Polymer Engineering and Science, 38, 965-970, (Jun 1998).

This paper reviews recent studies on the mechanism of corona treatment of polyolefin films, specifically the chemical and physical changes of this process and the self-adhesion mechanism. Corona discharge of polymeric films introduces polar groups into the surfaces, which increases the surface energy and, as a consequence, improves substrate wettability and adhesion. The main chemical mechanism of corona treatment is oxidation. In addition, corona treatment can crosslink surface regions and increase the film cohesive strength.

988. Miller, J.D., S. Veeramasuneni, J. Drelich, M.R. Yalamanchili, and G. Yamauchi, “Effect of roughness as determined by atomic force microscopy on the wetting properties of PTFE thin films,” Polymer Engineering and Science, 36, 1849-1855, (Jul 1996).

The influence of film roughness on the wetting properties of vacuum-deposited polytetrafluorethylene (PTFE) thin films has been investigated using atomic force microscopy (AFM) and contact angle goniometry. Surface roughness has been characterized by atomic force microscopy in terms of RMS roughness (Rq) and fractal dimensions. A contact angle correlation with surface roughness, as determined by AFM, is evident from these results, which are discussed on the basis of wetting theory. The results also confirm that the high water contact angles (as high as 150°) recently observed at the surface of a new water repulsive coating material (mixture of PTFE and binder) are because of surface roughness. Such measurements clarify the effect of nanometer-size surface asperities on the wetting properties of hydrophobic coating.

1037. Somodi, P.J., R.K. Eby, R.J. Scavuzzo, and G.R. Wilson, “Characterization of the interfacial bond in paper-propylene laminates and the effects of ageing under service conditions,” Polymer Engineering and Science, 37, 845-855, (May 1997).

This study focused on the behavior of the paper-polypropylene-paper (PPP) laminate while aging in hot oil in the absence of voltage stress. The results provide an understanding of both the quality of the interfacial bond and the performance of this bond during service. X-ray photoelectron spectroscopy performed on two different peeled laminates suggest that the bond failed primarily adhesively. Weibull statistical analysis of the peel strength data obtained on unaged laminates and those aged in polybutene oil at 90°C for 120 hours showed that the strength loss is consistent with one failure mechanism and the failure rate increases with applied stress. For the aged sample, Weibull analysis results are consistent with the prior loss of peel strength due to the aging. Experiments on the solubility of the oil show that lamination reduces the amount of absorption in comparison to the unlaminated composite. Swelling experiments on the individual components show differential swelling between the paper and polypropylene to be the source of the strength loss. The polypropylene swells, and the paper shrinks. Measurements on the laminate show that both paper and polypropylene shrink, indicating that the paper governs the laminate swelling process. During aging, the differential swelling generates internal stresses on the interface. In addition to yielding the magnitudes of these stresses, finite element analysis also predicts plastic deformation and creeping of the polypropylene as well as tensile stresses between the paper and polypropylene at a free edge. Very likely these processes damage the bond and contribute to the loss of bond strength.

1279. Carley, J.F., and P.T. Kitze, “Corona-discharge treatment of polymeric films, II. Chemical studies,” Polymer Engineering and Science, 20, 330-338, (Mar 1980).

Polymeric films, chiefly polyethylenes, were subjected to corona-discharge treatment in a continuous treater at commercial rates in a program covering wide ranges of the main processing factors (2). Electron-spin-resonance measurements on freshly treated films found no free radicals. Reactions of the treated surfaces with a free-radical compound, diphenyl picryl hydrazyl (DPPH) were studied, focusing mainly on the rate effects. The evidence indicates that corona treatment produces fairly stable peroxide structures of the forms RO2R and RO3R on polyethylene surfaces. RO3R reacts rapidly with DPPH alone, while RO2R undergoes a slower reaction after addition of the catalyst, triethylene diamine. DPPH is capable of detecting as few as 1013 peroxide groups per square centimeter. Activation energies were 12 kcal/mole for the uncatalyzed reaction and 16 kcal/mole for the amine-catalyzed reaction. As with the physical effects reported earlier (2), the production of peroxides is most strongly dependent on the energy delivered to the film during treatment. This energy is proportional to the quotient of corona current and web speed, I/S, Regression analysis showed that air-gap thickness, relative humidity, and number of electrodes used also were significant factors, while dielectric thickness and corona frequency were not. We found that-γ, the polar component of surface energy of the treated film, which is nearly zero for untreated polyethylenes, is exponentially related to the concentrations of both RO2R and RO3R with a correlation coefficient for 92 specimens tested of 0.88. We believe this is the first strong evidence linking treatment factors, at commercial levels of treatment, to chemistry of the treated surface and linking both of those to changes in physical behavior of the surface.

1312. Kwok, D.Y., L.K. Cheung, C.B. Park, and A.W. Neumann, “Study on the surface tensions of polymer melts using axisymmetric drop shape analysis,” Polymer Engineering and Science, 38, 757-764, (1998).

It is shown that Axisymmetric Drop Shape Analysis (ADSA) is well-suited for the study of polymer melt surface tensions. The technique is not restricted to equilibrium surface (interfacial) tensions; it is also suitable for measuring the time dependence (or kinetics) of surface tension of polymer melts. Results for three polymers, polypropylene, polyethylene, and polystyrene, at temperatures above 170°C are reported. Contrary to the well-known decrease of surface tension in low molecular weight surfactant solutions as a result of equilibration, an increase in the melt surface tension is observed under isothermal conditions.

1315. Kwok, D.Y., C.N.C. Lam, A. Li, K. Zhu, R. Wu, and A.W. Neumann, “Low-rate dynamic contact angles on polystyrene and the determination of solid surface tensions,” Polymer Engineering and Science, 38, 1675-1684, (1998).

Low-rate dynamic contact angles of 13 liquids on a polystyrene polymer are measured by an automated axisymmetric drop shape analysis – profile (ADSA-P). It is found that 7 liquids yielded non-constant contact angles, and/or dissolved the polymer on contact. From the experimental contact angles of the other 6 liquids, it is found that the liquid-vapor surface tension times cosine of the contact angle changes smoothly with the liquid-vapor surface tension, i.e. γlvcosθ depends only on γlv for a given solid surface (or solid surface tension). This contact angle pattern is in harmony with those from other inert and non-inert (polar and non-polar) surfaces (7–13, 24–26). The solid-vapor surface tension calculated from the equation-of-state approach for solid-liquid interfacial tensions (33) is found to be 29.8 mJ/m2, with a 95% confidence limit of ±0.5 mJ/m2 from the experimental contact angles of 6 liquids.

1468. Lahti, J. A. Savolainen, J.P. Rasanen, T. Suominen, and H. Huhtinen, “The role of surface modification in digital printing on polymer-coated packaging board,” Polymer Engineering and Science, 44, 2052-2060, (Nov 2004).

Digital printing is increasingly being used for package printing. One of the major techniques of digital printing is dry-toner electrophotography. This paper evaluates the printability of three different extrusion coatings used for packaging boards: low-density polyethylene (PE-LD), ethylene methyl acrylate (E/MA) and polyethylene terephthalate (PET). Extrusion coatings in general have an impervious, chemically inert, nonporous surface with low surface energies that cause them to be non-receptive to bonding with toners. The most common methods used in improving the adhesion properties of polymer coatings are different surface treatments. These increase the surface energy and also provide the polar molecular groups necessary for good bonds between the toner and polymer molecules. The polymer coatings have been modified with electrical corona discharge treatment. The effects of corona on polymer surfaces and the correlation between surface modification and print quality have been evaluated. Results show that sufficiently high surface energy and surface-charge uniformity are necessary for even print quality and toner adhesion. E/MA and PET have the required surface-energy level without the corona treatment, but PE-LD needs surface modification in order to succeed in the electrophotographic process. E/MA also has exceptional surface-charge properties compared with PET and PE-LD. Polym. Eng. Sci. 44:2052–2060, 2004. © 2004 Society of Plastics Engineers.

1518. Schonhorn, H., et al, “Surface modification of polymers and practical adhesion,” Polymer Engineering and Science, 17, 440-449, (1977).

The, nature of polymer surfaces has received increasing attention as the use of these materials, in a variety of forms, increases yearly. Modifications of polymer surfaces for adhesion, friction, and diffusion oriented appiications have necessitated a careful analysis of the surfade region morphology (surface physics) and chemical properties of the surface layer (surface chemistry). The behavior of composite structures has involved the discipline of classical fracture mechanics. The orientation of polymeric species or additives which migrate to the interface may modify the wetting characteristics and, most certainly, the frictional properties in addition to the diffusion of penetrant species beyond the boundary layer. The above topics are discussed within the framework of recent analytical and theoretical developments in surface science. The findings of these recent studies have facilitated many exciting technological advances.

2034. Fourches, G., “An overview of the basic aspects of polymer adhesion, I: Fundamentals,” Polymer Engineering and Science, 35, 957-967, (Jun 1995).

Adhesion between two substrates is a complex phenomenon which at present is still not well understood. The important existing adhesion models (electrical, diffusion, thermodynamic adsorption, chemical, etc.) are reviewed in order to try to explain their mechanisms. Thermodynamic adsorption is now believed to be one of the most importnat mechanisms by which adhesion is achieved. Difusion and wetting are kinetic means in attaining good adsorption of a polymer at the interface. In the case of this model (thermodynamic adsorption), the notion of surface energy is developed and the importance of this property in the understanding of adhesion phenomena is emphasized. The methods of determining the surface characteristics of low and high energy solids are presented. The role played by acid-base interactions in adhesion is also mentioned.

2422. Pawde, S.M., and K. Deshmukh, “Surface characterization of air plasma treated poly vinylidene fluoride and poly methyl methacrylate films,” Polymer Engineering and Science, 49, 808-818, (2009).

In this investigation, the surface modification of poly vinylidene fluoride (PVDF) and poly methyl methacrylate (PMMA) film induced by air plasma has been investigated using contact angle measurement, electron spectroscopy for chemical analysis (ESCA), and ATR-FTIR spectroscopy. Plasma treatment affects the polymer surfaces to an extent of several hundreds to several thousand angstroms deep, and the bulk properties of the polymer substrate are never modified because of its low penetration range. Plasma surface treatment also offers the advantage of greater chemical flexibility. The plasma exposure leads to weight loss and changes in the chemical composition of the polymer film surfaces. The contact angle of water shows decrease in surface wettability of PVDF and PMMA as the treatment time increases. The improvement in adhesion was studied by measuring T-peel strength. In addition, printability of plasma treated PVDF and PMMA was studied by cross test method. It was found that printability increases considerably for plasma treatment of short duration. Surface energy and surface roughness can be directly correlated to the improvement in the aforementioned surface related properties. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers

2521. Lin, T.-K., S.-J. Wu, C.-K. Peng, and C.-H. Yeh, “Surface modification of polytetrafluoroethylene films by plasma pretreatment and graft copolymerization to improve their adhesion to bismaleimide,” Polymer International, 58, 46-53, (Jan 2009).

BACKGROUND: Polytetrafluoroethylene (PTFE) is utilized in many engineering applications, but its poor wettability and adhesion properties with other materials have limited its use. The study reported was aimed at achieving surface modification of PTFE films by radiofrequency NH3 and N2 plasma treatment, followed by graft copolymerization, in order to improve the interfacial adhesion of PTFE and bismaleimide.

RESULTS: X-ray photoelectron spectroscopy results showed that a short-time plasma treatment had a distinct defluorination effect and led to nitrogen functional group formation. The nitrogen chemical bonding form was different for NH3 and N2 plasma treatments. Under the same experimental conditions, the NH3 plasma exhibited a better etching effect than did the N2 plasma. Contact angle measurement showed an improvement in both surface energy and wettabliity by short-time plasma treatment. The concentration of the surface-grafted bismaleimide on PTFE increased after the plasma pretreatment. The lap shear strength between PTFE and bismaleimide increased significantly after surface modification.

CONCLUSION: This study found that plasma treatment caused changes in surface chemistry, thus leading to an increase of the wettability of PTFE surfaces. Hence, the adhesion properties of PTFE with bismaleimide were significantly improved. Copyright © 2008 Society of Chemical Industry

962. Novak, I., and S. Florian, “Influence of ageing on adhesive properties of polypropylene modified by discharge plasma,” Polymer Intl., 50, 49-52, (Jan 2001).

The adhesive properties of isotactic polypropylene with different degrees of crystallinity, surface-modified by corona discharge plasma have been studied, during the process of ageing. Considerable decrease in the surface free energy and its polar component was observed. A significant correlation was found between the mechanical work of adhesion to polyvinyl acetate and the polar fraction during ageing. The influence of the crystallinity of the polymer on the resulting adhesion parameters of aged polypropylene foil was confirmed. © 2001 Society of Chemical Industry

1284. Zheng, Z., et al, “A study of the influence of controlled corona treatment on UHMWPE fibres in reinforced vinylester composites,” Polymer Intl., 52, 1833-1838, (Dec 2003).

In order to illuminate the mechanisms of corona discharge treatment on ultra-high molecular weight polyethylene (UHMWPE) fibre, the effects of corona treatment power and time are discussed in detail. The surface-roughness and tensile-failure characteristics of the polyethylene fibre were determined by a scanning electron microscope (SEM). The photos from the SEM showed that the size and number of the micro-pits on the fibre surface increase with increase of corona power. The oxygen-containing groups on the fibre surface could be detected by Fourier-transform infrared attenuated total reflectance and also increased gradually with increase of corona power. The T-peel strength of composites increased from the corona treatment, and then showed a maximum value at a corona treatment time about 0.1 s with increase of treatment time. However, the tensile strength of the fibre was reduced with increase of corona power and the failure mechanism obviously changed after the treatment. The ballistic impact energy absorption of UHMWPE fibre/vinylester composite was obtained after fragment simulating projectiles (FSP) impact tests. After 6-kW corona treatment for 0.075 s, the impact energy absorbed by the laminate reached a maximum value. Copyright © 2003 Society of Chemical Industry

2768. Kim, K.-J., S.-B. Lee, and N.W. Han, “Effects of the degree of crosslinking on properties of poly(vinyl acetate) membranes,” Polymer J., 25, 1295-1302, (1993).

Asymmetric poly(vinyl alcohol) (PVA) membranes were prepared by the phase inversion technique, and crosslinked with glutaraldehyde. The degree of crosslinking of the membrane was controlled by varying the crosslinking conditions. The effects of the degree of crosslinking on the swelling characteristics, contact angles, critical surface tensions, and pervaporation characteristics were examined. A method for the evaluation of the degree of crosslinking, which needs only the gluaraldehyde concentration of the crosslinking solution to be measured after the crosslinking reaction, is proposed, and was found useful. The degree of swelling of PVA membrane for water decreases abruptly as the degree of crosslinking increases. However, the degree of swelling for ethanol is nearly independent of the degree of crosslinking. The critical surface tension of the membrane increases more or less within the range of 37.0–40.0 dyn cm−1 with increasing degree of crosslinking below 30%. But, it is nearly constant at 40.5 dyn cm−1 above 30%. The wetting behavior of the membrane may not be greatly affected by the degree of crosslinking. The selectivity factor and permeate flux of the membrane in the pervaporation of the ethanol-water mixture of 95 wt% ethanol concentration decrease similarly with increasing degree of crosslinking. The pervaporation characteristics seem to be closely related to the swelling behavior. The degree of crosslinking is an important variable for swelling behavior and pervaporation characteristics.

1747. Hudis, M., and L.E. Prescott, “Surface crosslinking of polyethylene produced by the ultraviolet radiation from a hydrogen glow discharge,” Polymer Letters, 10, 179-183, (1972).

Plasma polymer interactions are actively being studied because of their unique ability to surface modify polymers without affecting their bulk properties. Plasma polymer interactions are characterized by those which result from the addition of molecules to the polymer surface and by those which result from polymer bond rearrangement. Surface crosslinking is a bond rearrangement reaction, and gives rise to the following surface property improvements: improved adhesion (l), improved absorption (2), and improved resistance from environmental attack (heat, ultraviolet radiation). Plasma induced surface crosslinking has been studied for a period in excess of ten years. Previous experiments have measured the existence of surface crosslinking as a function of the gas used for the plasma and the technique by which the plasma has been produced (3-6). These studies have completely neglected the plasma properties which were responsible for the surface crosslinking. This approach has failed to provide a comprehensive picture which explains the experimental data and has resulted in the requirement that the polymer be in physical contact with the plasma. The present experiment investigates the coupling mechanism which exists between the plasma and the polymer. The results of the experiment demonstrates that ultraviolet radiation (uv), produced by a hydrogen glow discharge, is sufficient to account for plasma induced surface crosslinking of high density commercial polyethylene. Physical contact between the plasma and the polymer is not required.

446. Culbertson, E.C., and D. Rudd, “Adhesion on plastic substrates,” Polymer Paint Colour Journal, 181, 538-541, (Sep 1991).

456. Elwes, E.H., and C. Delahaye, “Adhesion problems associated with coating polypropylene,” Polymer Paint Colour Journal, 181, 151-152, (Mar 1991).

417. Bataille, P., M. Dufourd, and S. Sapieha, “Graft polymerization of styrene onto cellulose by corona discharge,” Polymer Preprints, 32, 559-560, (Apr 1991).

577. Silverstein, M.S., and Y. Sodovsky, “Wetting and adhesion in UHMWPE films and fibers,” Polymer Preprints, 34, 308-309, (Aug 1993).

514. Lee, L.-H., “Wettability of functional polysiloxanes,” Polymer Science and Technology, 9B, 647+, (1975).

2089. Sanchis, M.R., O. Calvo, O. Fenollar, D. Garcia, and R. Balart, “Characterization of the surface changes and the aging effects of low-pressure nitrogen plasma treatment in a polyurethane film,” Polymer Testing, 27, 75-83, (Feb 2008).

In this work, low-pressure nitrogen plasma has been used to improve wettability in a polyurethane film. Evaluation of wettability changes has been carried out using contact angle measurements. Furthermore, plasma-treated films have been subjected to air aging to evaluate the extent of hydrophobic recovery. X-ray photoelectron spectroscopy (XPS) has been used to study surface functionalization; surface topography changes related with the etching mechanism have been followed by scanning electron microscopy (SEM), atomic force microscopy (AFM) and weight loss study. The results show a considerable improvement in surface wettability even for short exposure times, as observed by a remarkable decrease in contact angle values. The aging study shows a partial hydrophobic recovery due to the re-arrangement of polar species and migration of low molecular oxidized material (LMWOM). In addition to surface activation, SEM and AFM analyses show slight changes in surface topography as a consequence of the plasma-etching mechanism.

2904. Zenkiewicz, M., “Comparative study on the surface free energy of a solid calculated by different methods,” Polymer Testing, 26, 14-19, (Feb 2007).

2949. Luque-Agudo, V., M. Hierro-Oliva, A.M. Gallardo-Moreno, and M.L. Gonzalez-Martin, “Effect of plasma treatment on the surface properties of polylactic acid films,” Polymer Testing, 96, (Apr 2021).

Plasma treatment is one of the methods currently used to obtain polymeric materials with surface properties appropriate to the functionality for which they were designed. However, the effects achieved after surface modification are not always long lasting and involve chemical and physical changes in the outermost layer. In this context, the effects of both argon and oxygen plasma on polylactic acid (PLA) films deposited on titanium were studied to determine which physical and chemical processes occur at the surface, and their duration. Regarding physical surface changes, there were scarcely any differences between both plasmas: roughness was very similar after treatments, root mean square height (Sq) being 10 times higher than the control, without plasma. Water contact angle (WCA) showed that the surface became more hydrophilic after application of the plasma, although hydrophilization was longer lasting in the case of argon treatment.

With regard to chemical changes, it was observed that the argon plasma treatment caused greater fragmentation of the polymer chains, and increased crosslinking between them. ToF-SIMS analysis made it possible to propose mechanisms to explain the formation of the fragments observed.

1359. Bai, G., and Y. Liu, “Plasma-based surface modification and adhesion enhancement of polyester monofilaments,” Polymeric Materials: Science and Engineering, 51, 708-711, (Jul 2006).

 

<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | Next-->