Accudynetest logo

Products available online direct from the manufacturer

ACCU DYNE TEST ™ Bibliography

Provided as an information service by Diversified Enterprises.

3040 results returned
showing result page 40 of 76, ordered by

2841. Lee, S., J.-S. Park, and T.R. Lee, “The wettability of fluoropolymer surfaces: Influence of surface dipoles,” Langmuir, 24, 4817-4826, (2008).

The wettabilities of fluorinated polymers were evaluated using a series of contacting probe liquids ranging in nature from nonpolar aprotic to polar aprotic to polar protic. Fully fluorinated polymers were wet less than partially fluorinated polymers, highlighting the weak dispersive interactions of fluorocarbons. For partially fluorinated polymers, the interactions between the distributed dipoles along the polymer backbone and the dipoles of the contacting liquids were evaluated using both polar and nonpolar probe liquids. The results demonstrate that the surface dipoles of the fluoropolymers generated by substituting fluorine atoms with hydrogen or chlorine atoms can strongly interact with polar contacting liquids. The wettabilities of the partially fluorinated polymers were enhanced by increasing the density of dipoles across the surfaces and by introducing differentially distributed dipoles.

2863. Cwikel, D., Q. Zhao, C. Liu, X. Su, and A. Marmur, “Comparing contact angle measurements and surface tension assessments of solid surfaces,” Langmuir, 26, 15289-15294, (2010).

Four types of contact angles (receding, most stable, advancing, and “static”) were measured by two independent laboratories for a large number of solid surfaces, spanning a large range of surface tensions. It is shown that the most stable contact angle, which is theoretically required for calculating the Young contact angle, is a practical, useful tool for wettability characterization of solid surfaces. In addition, it is shown that the experimentally measured most stable contact angle may not always be approximated by an average angle calculated from the advancing and receding contact angles. The “static"” CA is shown in many cases to be very different from the most stable one. The measured contact angles were used for calculating the surface tensions of the solid samples by five methods. Meaningful differences exist among the surface tensions calculated using four previously known methods (Owens-Wendt, Wu, acid-base, and equation of state). A recently developed, Gibbsian-based correlation between interfacial tensions and individual surface tensions was used to calculate the surface tensions of the solid surfaces from the most stable contact angle of water. This calculation yielded in most cases higher values than calculated with the other four methods. On the basis of some low surface energy samples, the higher values appear to be justified.

2895. Extrand, C.W., and S.I. Moon, “Contact angles of liquid drops on super hydrophobic surfaces: Understanding the role of flattening of drops by gravity,” Langmuir, 26, 17090-17099, (Oct 2010).

Measurement of contact angles on super hydrophobic surfaces by conventional methods can produce ambiguous results. Experimental difficulties in constructing tangent lines, gravitational distortion or erroneous assumptions regarding the extent of spreading can lead to underestimation of contact angles. Three models were used to estimate drop shape and perceived contact angles on completely nonwetting super hydrophobic surfaces. One of the models employed the classic numerical solutions from Bashforth and Adams. Additionally, two approximate models were derived as part of this work. All three showed significant distortion of microliter-sized drops and similar trends in perceived contact angles. Liquid drops of several microliters are traditionally used in sessile contact angle measurements. Drops of this size are expected to and indeed undergo significant flattening on super hydrophobic surfaces, even if the wetting interactions are minimal. The distortion is more pronounced if the liquid has a lesser surface tension or greater density. For surfaces that are completely nonwetting, underestimation of contact angles can be tens of degrees. Our modeling efforts suggest that accurate contact angle measurements on super hydrophobic surfaces would require very small sessile drops, on the order of hundreds of picoliters.

2896. Srinivasan, S., G.H. McKinley, and R.E. Cohen, “Assessing the accuracy of contact angle mesaurements for sessile drops on liquid-repellant surfaces,” Langmuir, 27, 13582-13589, (Sep 2011).

Gravity-induced sagging can amplify variations in goniometric measurements of the contact angles of sessile drops on super-liquid-repellent surfaces. The very large value of the effective contact angle leads to increased optical noise in the drop profile near the solid–liquid free surface and the progressive failure of simple geometric approximations. We demonstrate a systematic approach to determining the effective contact angle of drops on super-repellent surfaces. We use a perturbation solution of the Bashforth–Adams equation to estimate the contact angles of sessile drops of water, ethylene glycol, and diiodomethane on an omniphobic surface using direct measurements of the maximum drop width and height. The results and analysis can be represented in terms of a dimensionless Bond number that depends on the maximum drop width and the capillary length of the liquid to quantify the extent of gravity-induced sagging. Finally, we illustrate the inherent sensitivity of goniometric contact angle measurement techniques to drop dimensions as the apparent contact angle approaches 180°.

2897. Kalantarian, A., R. David, and A.W. Neumann, “Methodology for high accuracy contact angle measurement,” Langmuir, 25, 14146-14154, (Aug 2009).

A new version of axisymmetric drop shape analysis (ADSA) called ADSA-NA (ADSA-no apex) was developed for measuring interfacial properties for drop configurations without an apex. ADSA-NA facilitates contact angle measurements on drops with a capillary protruding into the drop. Thus a much simpler experimental setup, not involving formation of a complete drop from below through a hole in the test surface, may be used. The contact angles of long-chained alkanes on a commercial fluoropolymer, Teflon AF 1600, were measured using the new method. A new numerical scheme was incorporated into the image processing to improve the location of the contact points of the liquid meniscus with the solid substrate to subpixel resolution. The images acquired in the experiments were also analyzed by a different drop shape technique called theoretical image fitting analysis-axisymmetric interfaces (TIFA-AI). The results were compared with literature values obtained by means of the standard ADSA for sessile drops with the apex. Comparison of the results from ADSA-NA with those from TIFA-AI and ADSA reveals that, with different numerical strategies and experimental setups, contact angles can be measured with an accuracy of less than 0.2°. Contact angles and surface tensions measured from drops with no apex, i.e., by means of ADSA-NA and TIFA-AI, were considerably less scattered than those from complete drops with apex. ADSA-NA was also used to explore sources of improvement in contact angle resolution. It was found that using an accurate value of surface tension as an input enhances the accuracy of contact angle measurements.

2899. Kanungo, M., S. Mettu, K.-Y. Law, and S. Daniel, “Effect of roughness geometry on wetting and dewetting of rough PDMS surfaces,” Langmuir, 30, 7358-7368, (Jun 2014).

Rough PDMS surfaces comprising 3 μm hemispherical bumps and cavities with pitches ranging from 4.5 to 96 μm have been fabricated by photolithographic and molding techniques. Their wetting and dewetting behavior with water was studied as model for print surfaces used in additive manufacturing and printed electronics. A smooth PDMS surface was studied as control. For a given pitch, both bumpy and cavity surfaces exhibit similar static contact angles, which increase as the roughness ratio increases. Notably, the observed water contact angles are shown to be consistently larger than the calculated Wenzel angles, attributable to the pinning of the water droplets into the metastable wetting states. Optical microscopy reveals that the contact lines on both the bumpy and cavity surfaces are distorted by the microtextures, pinning at the lead edges of the bumps and cavities. Vibration of the sessile droplets on the smooth, bumpy, and cavity PDMS surfaces results in the same contact angle, from 110°-124° to ∼91°. The results suggest that all three surfaces have the same stable wetting states after vibration and that water droplets pin in the smooth area of the rough PDMS surfaces. This conclusion is supported by visual inspection of the contact lines before and after vibration. The importance of pinning location rather than surface energy on the contact angle is discussed. The dewetting of the water droplet was studied by examining the receding motion of the contact line by evaporating the sessile droplets of a very dilute rhodamine dye solution on these surfaces. The results reveal that the contact line is dragged by the bumps as it recedes, whereas dragging is not visible on the smooth and the cavity surfaces. The drag created by the bumps toward the wetting and dewetting process is also visible in the velocity-dependent advancing and receding contact angle experiments.

2900. Seveno, D., A. Vaillant, R. Rioboo, H. Adao, J. Conti, and J. DeConinck, “Dynamics of wetting revisited,” Langmuir, 25, 13034-13044, (Oct 2009).

We present new spreading-drop data obtained over four orders of time and apply our new analysis tool G-Dyna to demonstrate the specific range over which the various models of dynamic wetting would seem to apply for our experimental system. We follow the contact angle and radius dynamics of four liquids on the smooth silica surface of silicon wafers or PET from the first milliseconds to several seconds. Analysis of the images allows us to make several hundred contact angle and droplet radius measurements with great accuracy. The G-Dyna software is then used to fit the data to the relevant theory (hydrodynamic, molecular-kinetic theory, Petrov and De Ruijter combined models, and Shikhmurzaev’s formula). The distributions, correlations, and average values of the free parameters are analyzed and it is shown that for the systems studied even with very good data and a robust fitting procedure, it may be difficult to make reliable claims as to the model which best describes results for a given system. This conclusions also suggests that claims based on smaller data sets and less stringent fitting procedures should be treated with caution.

2902. Gao, L., and T.J. McCarthy, “Contact angle hysteresis explained,” Langmuir, 22, 6234-6237, (Jun 2006).

A view of contact angle hysteresis from the perspectives of the three-phase contact line and of the kinetics of contact line motion is given. Arguments are made that advancing and receding are discrete events that have different activation energies. That hysteresis can be quantified as an activation energy by the changes in interfacial area is argued. That this is an appropriate way of viewing hysteresis is demonstrated with examples.

1189. Rasmussen, J.R., “The organic surface chemistry of low-density polyethylene film (PhD thesis),” M.I.T., 1976.

2678. Hejda, F., P. Solar, and J. Kousal, “Surface free energy determination by contact angle measurements - a comparison of various approaches,” in WDS '10 Proceedings, Part III, 25-30, MATFYZ Press, 2010.

One of the parameters characterizing the surfaces of materials is the surface free energy. The most common way to determine its value is to measure the surface tension by the sessile drop method. In this case a contact angle between the surface and the edge of droplets of liquids is measured. There are various approaches to calculate the surface free energy from the contact angle measurements. We made a review and a direct comparison of the most widely used methods and testing liquids in order to re-evaluate their advantages and disadvantages. In the presented work we discuss the limits of applicability of the examined methods. We confirm that methods using a pair of liquids give results dependent on the liquids chosen. Using a pair of non-polar and polar liquid yielded most reliable results. This is even more clear when two-liquid method is transformed into a multiple-liquid method. The algorithms developed during the work will be implemented into liquid contact angle analysis software.

511. Lee, B.-I., “Low temperature plasma surface treatment of polymers and fillers (graduate thesis),” MIT, 1971.

556. Sarabia, A., “Plasma surface treatment of poly(phenyl sulfide) and poly(etheretherketone) prior to adhesive bonding (MS thesis),” MIT, 1987.

1742. Coates, D.M., and S.L. Kaplan, “Modification of polymeric surfaces with plasma,” MRS Bulletin, 21, 43-45, (1996).

As adaptable as polymeric materials are in their many applications to our daily lives, the need exists to tailor the polymer surfaces to provide even more flexibility in regard to their uses. Plasma treatments offer an unprecedented spectrum of possible surface modifications to enhance polymers, ranging from simple topographical changes to creation of surface chemistries and coatings that are radically different from the bulk polymer. Furthermore plasma treatments are environmentally friendly and economical in regard to their use of materials.

Plasma processing can be classified into at least four categories that often overlap. These are the following: (1) surface preparation by breakdown of surface oils and loose contaminates, (2) etching of new topographies, (3) surface activation by creation or grafting of new functional groups or chemically reactive, excited metastable species on the surface, and (4) deposition of monolithic, adherent surface coatings by polymerization of monomeric species on the surface. Key features of these processes will be briefly discussed, with a rudimentary introduction to the chemistries involved, as well as examples. Focus is placed on capacitively coupled radio-frequency (rf) plasmas (see Figure 1 in the article by Lieberman et al. in this issue of MRS Bulletin) since they are most commonly used in polymer treatment.

2469. no author cited, “Bonding low surface energy plastics,” Machine Design, 0, (Jun 2000).

1013. Poncin-Epaillard, F., J.C. Brosse, and T. Falher, “Reactivity of surface groups formed onto a plasma treated poly(propylene) film,” Macromolecular Chemistry & Physics, 200, 989-996, (May 1999).

Cold plasma treatments of polymers, dry processes, allow either the elaboration of hydrophilic or hydrophobic surfaces. For example, a poly(propylene) film treated in nitrogen plasma shows a surface having a hydrophilic and basic character since amino groups are attached onto the surface during the treatment. The treatment induces an increase of the surface tension of the polymeric material, which may be sometimes destroyed by an aging effect. For the treatment of poly(propylene) in nitrogen plasma, the aging is mostly due to a motion of attached groups from the surface to the bulk of the material and some oxidation of radicals formed during plasma treatment. The surface radicals formed and used for a post-reaction such as grafting are characterized in terms of chemical nature, density and reactivity.

1479. Chehimi, M.M., E. Cabet-Deliry, A. Azioune, and M.L. Abel, “Characterization of acid-base properties of polymers and other materials: Relevance to adhesion science and technology,” Macromolecular Symposia, 178, 169-181, (2002).

This paper reviews the background to the theory of Lewis acid-base (AB) interactions in adhesion, adsorption, wetting and mixing of polymers and other materials (pigments, fillers, fibres, etc.). These specific materials interactions require the revision of old concepts («polar» interactions) and the development of new analytical techniques and methodologies. Four of the most currently used techniques to characterize AB interactions are described: contact angle measurements, inverse gas chromatography. X-ray photoelectron spectroscopy, and atomic force microscopy.

2100. Severini, F., L. Di Landro, L. Galfetti, L. Meda, G. Ricca, and G. Zenere, “Flame surface modification of polyethylene sheets,” Macromolecular Symposia, 181, 225-244, (May 2002).

High density polyethylene sheets 2 mm thick were flame treated to modify the surface properties. Sheets treated using a flame with air to gas (methane) ratio ∼ 10:1 at different distances between the inner cone tip of the flame and the polymer surface were investigated. Grafting of selected monomers as maleic anhydride, acrylamide and glycidyl methacrylate was attempted by flame treatment of sheets covered with a monomer layer. Good grafting results were obtained with acrylamide and maleic anhydride. The surface temperature-time dependence during the flame treatment was measured with a high resolution thermocouple. Scanning Electron Microscopy (SEM) allowed evidencing a modified thickness of about 120 μ. The chemical surface modification was studied by X ray Photoelectron Spectroscopy (XPS) and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFT). The hydroxyl, carbonyl and carboxyl content was measured after derivatization with reagents containing an elemental tag to facilitate XPS analysis of surface functional groups. In comparison to the untreated polyethylene, wetting tension and contact angle of the flamed materials showed a strong variation. This variation was almost independent of the distance between the flame and the polymer surface. Adhesion between treated polyethylene and a polyurethane adhesive was determined using T-peel test measurements. High adhesion levels were found with flame treated polyethylene at 5 mm distance. XPS results indicate that when adhesion is high, the hydroxyl is in excess compared to the other measured functions, i.e. carbonyl and carboxyl species.

261. Nuzzo, R.G., and G. Smolinsky, “Preparation and characterization of functionalized polyethylene surfaces,” Macromolecules, 17, 1013-1019, (1987).

We describe a procedure to modify the surface of polyethylene (PE) film using a combination of gas discharge and wet chemical techniques. This method generates high densities (1014-1016 cm-2) of a specific functionality, largely unaccompanied by other groups, in a 50-100-Å surface layer. The topography of the polymer surface remains unchanged after treatment and functions as an effective starting material for subsequent derivatization by standard synthetic chemical reactions. A plasma of either oxygen, water, or hydrogen is generated under comparable experimental conditions. In all cases a 1-2-s, 5-W, 0.2-Torr treatment produces about the same degree of surface modification as does longer treatment. High-resolution X-ray photoelectron spectroscopy (XPS) shows that either an oxygen or a water plasma produces a variety of oxidation products ranging from alcohols to carboxylic acids. Chromic acid oxidizes the plasma-oxidized surface further to give high densities of carboxylic acid groups which can be readily converted to acid chlorides and derivatized. Borane/tetrahydrofuran reduces the plasma-oxidized surface to give alcohols which can be esterified readily. Contact-angle measurements show that the water-plasma-treated PE surface has a higher surface free energy (γs ∼ 62 dyn/cm) than the oxygen-plasma-treated surface (γs ∼ 50 dyn/cm). A 5-s, ambient-temperature, 0.2-Torr, 2-W hydrogen plasma generates a significant number of quenchable radical sites. XPS spectra of this treated surface, exposed to either nitric oxide or nitrosotrifluoromethane, show that both compounds bond to the surface.

313. Schmidt, J.J., J.A. Gardella, Jr., and L. Salvati Jr., “Surface studies of polymer blends, II. An ESCA and IR study of poly(methylmethacrylate)/poly(vinyl chloride) homopolymer blends,” Macromolecules, 22, 4489-4495, (1989).

Angle-dependent ESCA and ATR-FTIR results are presented for homopolymer blends of poly(Methyl methacrylate) and poly(vinyl chloride}. Blends over the entire composition range were cut from tetrahydrofuran (THF) and methyl ethyl ketone (MEK). Surfacee enrichment of PMMA was present at all compositions of blends cast from THF, while blends cast from MEK exhibited surface compositions that were within error limits equivalent to the bulk compositions in the blends.

321. Schonhorn, H., “Heterogeneous nucleation of polymer melts on high-energy substrates, II. Effect of substrate on morphology and wettability,” Macromolecules, 1, 145-151, (1968).

Heterogeneous nucleation and crystallization of polymer melts against high-energy surfaces (eg, metals, metal oxides, and alkali halide crystals) have been found to result in markedchanges in both thesurface region morphology and wettability of these polymers even though the chemical constitution of the polymer is un-changed. The critical surface tensions (7c) of a variety of polymers nucleated against gold are considerably in excess of the commonly accepted values. Employing a modified Fowkes-Young equation can account for these sizable differences if the surface layer of these crystallizable polymers generated against high-energy surfaces is essentially crystalline.

342. Siow, K.S., and D. Patterson, “The prediction of surface tensions of liquid polymers,” Macromolecules, 4, 26-30, (1971).

361. Suzuki, M., A. Kishida, H. Iwata, and Y. Ikada, “Graft copolymerization of acrylamide onto a polyethylene surface pretreated with a glow discharge,” Macromolecules, 19, 1804-1808, (1986).

364. Thomas, H.R., and J.J. O'Malley, “Surface studies on multicomponent polymer systems by x-ray photoelectron spectroscopy.Polystyrene/poly(ethylene oxide) diblock copolymers,” Macromolecules, 12, 323-329, (1979).

459. Frederickson, G.H., “Surface ordering phenomena in block copolymer melts,” Macromolecules, 20, 2535-2542, (Oct 1987).

A mean field theory is presented to describe surface ordering phenomena in diblock copolymers near the microphase separation transition (MST). We consider a near-symmetric diblock melt in the vicinity of a solid wall or free surface, such as a film-air interface. The surface is allowed to modify the Flory interaction parameter and the chemical potential in the adjacent copolymer layer. The composition profile normal to the surface is investigated both above and below the MST. In contrast to the surface critical behavior of binary fluids or polymer blends, we find interesting oscillatory profiles in copolymers that arise from the connectivity of the blocks. These composition profiles might be amenable to study by ellipsometry, by evanascent wave-induced fluorescence, or by scattering techniques. Wetting and other surface phenomena and transitions in block copolymers are briefly discussed.

479. Hobbs, J.P., C.S.P. Sung, K. Krishnann, and S. Hill, “Characterization of surface structure and orientation in polypropylene and poly(ethylene terephthalate) films by modified attenuated total reflection IR dichromism studies,” Macromolecules, 16, 193-199, (1983).

986. Kang, E.T., K.L. Tan, K. Kato, Y. Uyama, and Y. Ikada, “Surface modification and functionalisation of polytetrafluoroethylene films,” Macromolecules, 29, 6872-6879, (Oct 1996).

Argon plasma-pretreated polytetrafluoroethylene (PTFE) films were subjected to further surface modification by near-UV light-induced graft copolymerization with acrylic acid (AAc), sodium salt of styrenesulfonic acid (NaSS), and N,N-dimethylacrylamide (DMAA). The surface compositions and microstructures of the modified films were characterized by angle-resolved X-ray photoelectron spectroscopy (XPS). A stratified surface microstructure with a significantly higher substrate-to-graft chain ratio in the top surface layer than in the subsurface layer was always obtained for PTFE surface with a substantial amount of the hydrophilic graft. The stratified surface microstructure was consistent with the observed hysteresis in advancing and receding water contact angles. The graft yield increased with Ar plasma pretreatment time and monomer concentration. Covalent immobilization of trypsin on the AAc polymer-grafted PTFE films was facilitated by water-soluble carbodiimide (WSC). The effective enzyme activities increased initially with increasing surface concentration of the grafted AAc polymer but became saturated at a moderate AAc polymer concentration. The immobilized enzyme could still retain close to 30% of its original activity. Solution-coating of the polymeric acid-modified PTFE films with the emeraldine (EM) base of polyaniline readily resulted in an interfacial charge transfer interaction and a semiconductive PTFE surface.

1018. Kuzuya, M., S. Kondo, M. Sugito, and T. Yamashiro, “Peroxy radical formation from plasma-induced surface radicals of polyethylene as studied by electron spin resonance,” Macromolecules, 31, 3230-3234, (May 1998).

The nature of peroxy radical formation from plasma-induced surface radicals of polyethylene (PE), both low-density polyethylene (LDPE) and high-density polyethylene (HDPE), was studied by electron spin resonance with the aid of systematic computer simulations. It was found that peroxy radical formation varies with the structure of component radicals of plasma-irradiated PE, both LDPE and HDPE:  Among three plasma-induced radicals of PE, dangling bond sites (DBS) undergo an instant conversion into the corresponding peroxy radicals in contact with oxygen, while the midchain alkyl radical is of very low reactivity with oxygen in both LDPE and HDPE. Computer simulations disclosed that ESR spectra of peroxy radicals are similar to each other in LDPE and HDPE, both being composed of two types of spectra, a partial >em>g-averaging anisotropic spectrum and a nearly isotropic single line spectrum due to different molecular motional freedom at the trapping sites of peroxy radicals.

1019. Kuzuya, M., T. Yamashiro, S. Kondo, M. Sugito, and M. Mouri, “Plasma-induced surface radicals of low-density polyethylene studied by electron spin resonance,” Macromolecules, 31, 3225-3229, (May 1998).

Plasma-induced low-density polyethylene (LDPE) radicals were studied in detail by electron spin resonance (ESR) by its comparison with ESR of high-density polyethylene (HDPE). The observed ESR spectra of plasma-irradiated LDPE are largely different in pattern from those of HDPE. The systematic computer simulation disclosed that such observed spectra consist of three kinds of radicals, midchain alkyl radical (1), allylic radical (2) as discrete radical species, and a large amount of dangling bond sites (DBS) (3) at an intra- and intersegmental cross-linked region. All these component radicals are essentially identical to those of HDPE. One of the most special features unique to plasma-irradiated LDPE, however, is the fact that thermally stable DBS (3) is a major component radical instead of a midchain alkyl radical in HDPE. This can be ascribed to the difference in polymer morphology between LDPE and HDPE:  branched structure with a large amount of amorphous region for LDPE and linear structure with a large amount of crystalline region for HDPE. Since one of the characteristics of plasma irradiation is the fact that it is surface-limited, LDPE would undergo the radical formation preferentially on the surface-branched structural moiety followed by facile cross-link reactions resulting in the formation of DBS. Thus, the nature of radical formation of PE was found to be affected by the polymer morphology in a very sensitive manner.

1034. Boyd, R.D., A.M. Kenwright, J.P.S. Badyal, and D. Briggs, “Atmospheric non-equilibrium plasma treatment of biaxially oriented polypropylene,” Macromolecules, 30, 5429-5436, (Sep 1997).

The chemical and physical effects incurred at the surface of biaxially oriented polypropylene film during silent discharge plasma treatment have been investigated using XPS, NMR, TOF-SIMS, and AFM techniques. It is found that chain scission accompanied by oxidative attack leads to the formation of low molecular weight oxidized material which agglomerates into globules at the surface due to a large difference in interfacial free energy between the underlying hydrophobic substrate and the oxygenated overlayer.

1786. Carey, D.H., and G.H. Ferguson, “Synthesis and characterization of surface-functional 1,2-polybutadiene bearing hydroxyl or carboxylic acid groups,” Macromolecules, 27, 7254-7266, (1994).

1787. Chapman, T.M., et al, “Determination of low critical surface tensions of novel fluorinated poly(amide urethane) block copolymers I: Fluorinated side chains,” Macromolecules, 28, 331-335, (1995).

1805. Iyengar, D.R., S.M. Perutz, C.-A. Dai, C.K. Ober, and E.J. Kramer, “Surface segregation studies of fluorine-containing diblock copolymers,” Macromolecules, 29, 1229-1234, (1996).

A diblock copolymer of deuterated styrene and isoprene (dPS−PI) with a small volume fraction of isoprene was chemically modified to incorporate pendant fluorinated side chains (“fingers”). The composition distribution of the diblock copolymers within a high molecular weight polystyrene (PS) homopolymer was determined by forward recoil spectrometry. Surface segregation and interfacial segregation of the modified block copolymers from a polystyrene matrix are observed in as-spun films. Equilibrium segregation was achieved on annealing at 160 °C for several days. The segregation isotherms at the air−polymer interface are shown to be quantitatively described by a self-consistent mean field theory (SCMF), and these permit us to estimate an effective Flory parameter which describes the attraction of the fluorinated segments to the surface and their repulsion from the bulk. The change in the surface tension as a result of the adsorption of the block copolymers at the air−homopolymer interface was evaluated from the predictions of SCMF theory and compared with the changes in the water contact angle observed. Advancing water contact angle data are consistent with the presence of a nonuniform layer of PS, CF2, and CF3 segments on the surface of the segregated samples.

1308. Li, D., and A.W. Neumann, “Wetting,” in Characterization of Organic Thin Films, Ulman, A., ed., 165-192, Manning Publications, 1995.

609. Dick, F., “Beta Kit Wettability Test Solutions,” Marbetech, 1989.

18. Berg, J.C., ed., Wettability, Marcel Dekker, Apr 1993.

19. Berg, J.C., “Role of acid-base interactions in wetting and related phenomena,” in Wettability, Berg, J.C., ed., 75-148, Marcel Dekker, Apr 1993.

26. Blake, T.D., “Dynamic contact angles and wetting kinetics,” in Wettability, Berg, J.C., ed., 251-310, Marcel Dekker, Apr 1993.

35. Bose, A., “Wetting by solutions,” in Wettability, Berg, J.C., ed., 149-182, Marcel Dekker, Apr 1993.

166. Huntsberger, J.R., “Interfacial energies, contact angles, and adhesion,” in Treatise on Adhesion and Adhesives, Vol. 5, 1-20, Marcel Dekker, 1981.

178. Johnson, R.E. Jr., and R.H. Dettre, “Wetting of low energy surfaces,” in Wettability, Berg, J.C., 1-74, Marcel Dekker, Apr 1993.

Wetting involves the interaction of a liquid with a solid. It can be the spreading of a liquid over a surface, the penetration of a liquid into a porous medium, or the displacement of one liquid by another. It can help to characterize surfaces and to determine solid/liquid interactions. Wettability is most often described by a sessile or resting drop. A schematic diagram is shown in Fig. 1. The contact angle (6) is a measure of wettability. A low contact angle means high wettability and a high contact angle means poor wettability. Zero contact angles are possible but they are always less than 180.(The highest commonly observed angle, mercury on glass, has been reported to be as high as 148 [1].) Systems having more than one stable contact angle are said to show contact-angle hysteresis.


<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | Next-->