Accudynetest logo

Products available online direct from the manufacturer

ACCU DYNE TEST ™ Bibliography

Provided as an information service by Diversified Enterprises.

3040 results returned
showing result page 67 of 76, ordered by
 

852. Vargo, T.G., J.A. Gardella Jr., R.L. Schmitt, K.J. Hook, et al, “Low energy ion scattering spectrometry of polymer surface composition and structure,” in Surface Characterization of Advanced Polymers, Sabbatini, L., and P.G. Zambonin, eds., 163-180, VCH, Jul 1993.

1663. Schussler, J., “Ensuring that folding box seams do not burst,” VR Verpackungs-Rundschau, 56-57, (Jun 2006).

661. Gutowski, W.S., S. Li, L. Russell, C. Filippou, M. Spicer, and P. Hoobin, “Molecular brush concepts in surface engineering of polymers for enhanced adhesion of adhesives and polymeric coatings,” in Adhesive Joints: Formation, Characteristics and Testing, Vol. 2, K.L. Mittal, ed., 3-48, VSP, 2002.

This paper reviews the theoretical principles of macromolecular design of polymer interface/interphase systems for obtaining maximum adhesion. Subsequently, a relatively simple and industry-feasible technology for surface grafting connector molecules is discussed in detail and supported by a range of experimental examples. It is shown, in agreement with contemporary theory, that the use of chemically attached graft chemicals of controlled spatial geometry and chemical functionality enables a significant increase in the strength and fracture energy of the interphase, to the point of cohesive fracture of the substrate, or that of an adjacent medium such as adhesives, paints or elastomers. This occurs even after prolonged exposure of bonded or painted materials to adverse environments such as hot water, thermal shock, UV radiation and other hostile ambients.

662. van Ooij, W.J., and H.R. Anderson Jr., eds., First International Congress on Adhesion Science and Technology: Festschrift in Honor of Dr. K.L. Mittal on the Occasion of his 50th Birthday, VSP, 1998.

663. Good, R.J., M.K. Chaudhury, and C. Yeung, “A new approach for determining roughness by means of contact angles on solids,” in First International Congress on Adhesion Science and Technology: Festschrift in Honor of Dr. K.L. Mittal on the Occasion of his 50th Birthday, W.J. van Ooij and H.R. Anderson, Jr., eds., 181-197, VSP, 1998.

Contact angle hysteresis on rough surfaces is caused by the contortion of the liquid surface that must occur as the liquid front passes from one metastable configuration to another. We have combined the Wenzel equation for the effect of roughness on the contact angle, 0, with the well-known equation relating contact angles to the surface free energy of the solid and of the liquid, and with Good’s hypothesis of a free energy barrier to liquid front motion. The method that is developed calls for measuring 0 for a series of liquids and plotting cos0a vs./yi and extrapolating to the limit of (\/yi) 0. On a perfectly smooth, homogeneous surface, the intercept is—1 and the Wenzel ratio for a rough surface is given, approximately, by the negative of the value of the intercept. A shift of the yc value for the solid, due to roughness, is also predicted. Experimental data are presented for measurements with Teflon FEP.

664. Shanahan, M.E.R., and A. Carre, “Retarded wetting and dewetting on elastomeric substrates,” in First International Congress on Adhesion Science and Technology: Festschrift in Honor of Dr. K.L. Mittal on the Occasion of his 50th Birthday, W.J. van Ooij and H.R. Anderson Jr., eds., 239-253, VSP, 1998.

Many wetting processes involve interpretation using Young’s equation to describe contact angle equilibrium on a solid surface. By assuming the solid to be rigid, no account is made of the component of the liquid surface tension perpendicular to the solid surface. It is shown that a wetting ridge must be formed and, although negligible for hard solids, this mesoscopic disturbance of the solid near the wetting front can have significant consequences on a soft solid. The theory of triple line displacement, taking into account viscoelastic dissipation in the wetting ridge, is developed both for wetting and dewetting processes. Experimental studies using tricresyl phosphate and two types of model solid—a rigid polymer and silicone elastomers—have been carried out. Both for wetting and dewetting, triple line motion is markedly slowed down on the soft solids as a result of viscoelastic dissipation near the triple line. Theoretical predictions and experimental findings are found to be in good agreement.

665. Owen, M.J., “Surface properties of silicone release coatings,” in First International Congress on Adhesion Science and Technology: Festschrift in Honor of Dr. K.L. Mittal on the Occasion of his 50th Birthday, W.J. van Ooij and H.R. Anderson Jr., eds., 255-263, VSP, 1998.

The Harkins relationship, that the spreading coefficient of an adhesive on a release coating is the difference between the work of adhesion of the materials and the work of cohesion of the adhesive, has been found to apply to a variety of silicone release coatings. The works of adhesion and cohesion were estimated from contact angle data using the Owens and Wendt approach. The prediction of the Harkins relationship is obeyed by almost all the combinations of pressure-sensitive adhesive and release coatings we have examined. Release occurs when the spreading coefficient is negative and does not when it is positive. The main exception to this general spreading coefficient rule is the failure of polytetrafluoroethylene to release polydimethylsiloxane-based pressure-sensitive adhesives. The cause is believed to be roughness of the polytetrafluoroethylene surface.

666. Brewis, D.M., and I. Mathieson, “Pretreatments of fluoropolymers. A review of studies between 1990 and 1995,” in First International Congress on Adhesion Science and Technology: Festschrift in Honor of Dr. K.L. Mittal on the Occasion of his 50th Birthday, W.J. van Ooij and H.R. Anderson, Jr., eds., 267-283, VSP, 1998.

The most effective commercial methods for pretreating fully fluorinated polymers at present are sodium in liquid ammonia and sodium naphthalenide in a solvent such as tetrahydrofuran. A number of other methods can produce large increases in bondability but are relatively inefficient. Plasma treatments of fully fluorinated polymers such as PTFE often introduce functional groups and/or increase wettability but result in moderate improvements at best in bondability. However, recent work with ammonia plasmas has resulted in big improvements in bondability. Some batches of partially fluorinated polymers may be effectively bonded without a pretreatment. However, other batches possess surface regions of low cohesive strength. Partially fluorinated polymers such as poly (vinyl fluoride) may be rapidly and effectively treated with a conventional flame treatment. Where a flame treatment is unsuitable, as with complex shapes, potassium hydroxide solutions provide effective treatments for partially fluorinated polymers such as poly (vinyl fluoride) and poly (vinylidene fluoride).

667. Nihlstrand, A., T. Hjertberg, and K. Johansson, “Oxygen plasma treatment of thermoplastic polyolefins: relevance to adhesion,” in First International Congress on Adhesion Science and Technology: Festschrift in Honor of Dr. K.L. Mittal on the Occasion of his 50th Birthday, W.J. van Ooij and H.R. Anderson Jr., eds., 285-305, VSP, 1998.

Injection-moulded plates of four commercial thermoplastic polyolefins (TPOs) were subjected to oxygen plasma treatment. The modified surfaces were analyzed by water contact angle measurements and X-ray photoelectron spectroscopy (XPS), and the adhesion properties of the plates were evaluated by a 90 peel test after being lacquered with a two-component polyurethane lacquer. The study included treatments in two different plasma reactors operating at different frequencies. The influence of certain processing parameters, such as discharge power, flow rate and gas pressure, was investigated, as was that of frequency (using the same reactor). While the results revealed that oxygen plasma treatment indeed led to improved wettability, the degree of surface modification was not highly affected by changes in the processing conditions. In contrast, there was a great effect on the lacquer adhesion, in particular by changes in discharge power and gas pressure. The results also showed that the TPOs were sensitive in different ways towards changes in the processing conditions. It was also found that, regardless of the absolute peel force, the failures occurred in the substrate at some distance below the oxidized layer. These observations were attributed to a VUV-induced formation of radicals which, in the case of polypropylenebased materials, predominantly lead to^-scissions. As secondary radicals have a higher tendency to form crosslinks that can compensate for chain scission reactions, the difference in the sensitivity of the TPOs was proposed to be related to the amount and distribution of ethylene in the materials.

668. Griesser, H.J., T.R. Gengenbach, L. Dai, S. Li, and R.C. Chatelier, “Plasma surface modifications for structural and biomedical adhesion applications,” in First International Congress on Adhesion Science and Technology: Festschrift in Honor of Dr. K.L. Mittal on the Occasion of his 50th Birthday, W.J. van Ooij and H.R. Anderson, Jr., eds., 307-328, VSP, 1998.

We discuss plasma surface modifications applied to perfluorinated polymers and polyolefins to achieve structural adhesive bonding or for biomedical purposes such as adhesion and proliferation of cells, and interfacial immobilization of biologically active molecules. We compare the properties of surface modifications performed in non-depositing plasma treatments with those of thin coatings produced in depositing plasma vapours (plasma polymerization), with particular emphasis on changes, on subsequent storage, to the properties and composition of the surface layers (‘ageing’). Such changes usually proceed for extended periods of time after plasma processing. Polymer surfaces treated in non-depositing plasmas generally are unstable, showing an increase in the air/water contact angles over days and weeks due to surface reorientation motions. Concurrently, the composition of the surface layers is also affected by post-plasma chemical reactions: originating from trapped radicals, oxidative chain reactions lead to the production of substantial amounts of oxygen-containing groups. These reactions also convert some of the groups originally incorporated into the surface layers by the plasma treatment; for instance, amine groups are converted to amide groups as evidenced by shifts in the XPS N 1s binding energy. Plasma polymer coatings analogously undergo oxidative compositional changes with time, and are capable of some surface reorganization. Thus, the nature and densities of the chemical groups on plasma-treated surfaces and plasma polymer coatings can change considerably with time. The relative contributions by concurrent reorientation motions and oxidative reactions to the compositional changes vary markedly between different plasma-prepared surfaces, but usually both processes contribute to the ageing of a surface. The generally long time constants of the reorientation of plasma polymer surfaces suggest that their limited, slow mobility may be neglected when interpreting interactions with adsorbing proteins.

669. Arefi-Khonsari, F., M. Tatoulian, N. Shahidzadeh, M.M. Chehimi, et al, “Adhesion, wettability and mechanical properties of ammonia- and helium-plasma-treated polypropylene,” in First International Congress on Adhesion Science and Technology: Festschrift in Honor of Dr. K.L. Mittal on the Occasion of his 50th Birthday, W.J. van Ooij and H.R. Anderson, Jr., eds., 329-353, VSP, 1998.

The physicochemical modifications of ammonia-treated polypropylene (PP) films have been studied and characterized in terms of acid-b ase properties using the contact angle titration method and X-ray photoelectron spectroscopy in conjunction with a molecular probe technique using chloroform as a reference Lewis acid. These techniques have shown that PP surfaces that have been treated for between 0.7-1 s are basic in character. For longer treatment times, the basic character of the surfaces decreases, as shown by the above techniques and confirmed by time of flight-secondary ion mass spectroscopy (ToF-S IMS). On the other hand, for such treatment times, a degradation of the adhesion and mechanical properties was observed. The ageing of an ammonia-plasma-treated PP was limited by a helium (He) plasma pretreatment known to crosslink the surface, stabilizing in this way the wettability, adhesion and mechanical properties. ToF-S IMS was performed on helium treated High Density Polyethylene (HDPE) in order to point out the structural modifications.

670. Joos, P., Dynamic Surface Phenomena, VSP, Sep 1999.

671. Mittal, K.L., ed., Contact Angle, Wettability and Adhesion, Vol. 2, VSP, Sep 2002.

672. Della Volpe, C., D. Maniglio, and S. Siboni, “The evaluation of surface free energy of polymers: The role of water acid-base properties and the measurement of an 'equilibrium' contact angle,” in Contact Angle, Wettability and Adhesion, Vol. 2, K.L. Mittal, ed., 45-71, VSP, Sep 2002.

The acid-base theory of surfaces, as proposed by van Oss, Chaudhury and Good, comнmonly suffers from a series of problems (apparent too high basicity of surfaces, results depending on the choice of liquid triplets, etc.). These problems can be solved if and only if a great attention is paid to the mathematical properties of the equations on which the theory is based. Two of these problems are analysed in detail in the present paper: the choice of the acid-base scale using water as a reference, and the use of the 'equilibrium' contact angle instead of the adнvancing contact angle.

673. Nam, S., and A.N. Netravali, “Tetralin and ammonia plasma treatment of ultra-high-strength polyethyelene fibers for improved adhesion to epoxy resin,” in Contact Angle, Wettability and Adhesion, Vol. 2, K.L. Mittal, ed., 147-162, VSP, Sep 2002.

The effects of 1, 2, 3, 4-tetrahydronaphthalene (tetralin) solvent and ammonia plasma treatments on surface characteristics and adhesion of ultra-high-strength polyethylene (UHSPE) fiнbers to epoxy resin were studied. Spectra™ 1000 (UHSPE) fibers were treated with either tetralin solvent or in combination with ammonia plasma, under various conditions. The changes in the fiber surface topography were characterized using scanning electron microscopy (SEM). Dynamic wetнtability measurements were made using the Wilhelmy technique. The fiber/epoxy resin interfacial shear strength (IFSS) was evaluated by the single fiber pull-out test. The fiber surfaces after the pull-out test were characterized by SEM. The SEM photomicrographs and wettability data showed that the surface roughness of the fibers increased after the tetralin solvent treatment and the fiber surface became more polar after the ammonia plasma treatment. The IFSS results indicated that combined tetralin and ammonia plasma treatments resulted in significant improvement in the adheнsion strength of UHSPE fibers with epoxy resin. This is attributed to the chemical, mechanical and topographical changes of the fibers resulting from the treatments.

674. Tyomkin, I., “Determination of contact angles in different size pores in a porous material,” in Contact Angle, Wettability and Adhesion, Vol. 2, K.L. Mittal, ed., 165-176, VSP, Sep 2002.

The two methods used for contact angle determination in this study are based on liquid porosimetry (LP). The LP measures volumes of different size pores when the liquid advances and then when the liquid drains from a porous structure. The LP provides pore volume distribution (PVD) and numerous other pore structure characteristics. The experimental data for this study were obtained with an automated TRI/Autoporosimeterо. The first method for contact angle measurement uses two liquids. One liquid has a known contact angle with the sample solid and the second is the liquid of interest. A comparison of the capillary pressures in different size pores for the two liquids provides the contact angle data for different size pores in the sample.

675. Chibowski, E., “Contact angle hysteresis due to a film present behind the drop,” in Contact Angle, Wettability and Adhesion, Vol. 2, K.L. Mittal, ed., 265-288, VSP, Sep 2002.

Recently receding contact angles have increasingly attracted attention in studies of wetting phenomena. The difference between the advancing and receding contact angles of the same liqнid on the same solid surface is termed 'contact angle hysteresis'. The hysteresis is usually ascribed to the solid surface roughness and/or its chemical heterogeneity. These possible mechanisms of the hysteresis appearance do not exclude another interpretation of the receding contact angle origin (E. Chibowski et al., in: Surfactants in Solution, A.K. Chattopadhyay and K.L. Mittal (Eds.), pp. 31-53, Marcel Dekker, 1996). In this approach, the presence of liquid film behind the drop is considered to be the cause for the ovbserved hysteresis, except, of course, for cases of rough and/or macro-chemically heterogeneous solid surfaces. In this paper, a new approach is presented and then verified using experimental advancing and receding contact angles taken from the literature. This approach allows an evaluation of the total surface free energy of a solid if the advancing and receding contact angles for a probe liquid are known. It does not require values of the solid surface free energy components for estimation of the value of total surface free energy.

677. Luner, P.E., and E. Oh, “Surface free energies of cellulose ether films,” in Contact Angle, Wettability and Adhesion, Vol. 2, K.L. Mittal, ed., 299-315, VSP, Sep 2002.

The objective of this study was to determine the surface free energy components of celнlulose ethers films. The surface free energy parameters were calculated from the contact angles of sessile drops of apolar and polar liquids on cellulose ether films cast on glass slides using the Lifshitz-van der Waals/acid-base (LW/AB) approach according to the method of van Oss, Chaudhury and Good (Chem. Rev. 88, 927-941, 1988). The cellulose ethers studied were hydroxypropyl methylcellulose (HPMC), methylcellulose (MC), hydroxypropylcellulose (HPC) and hydroxyethylcellulose (HEC) and ethylcellulose (EC). The total surface free energy of these cellulose ethers ranged from 29-50 mJ/m2. The overall trend in the values of the thermodynamic terms derived from the surface free energy parameters as indicators of hydrophilicity was in good agreement with the relaнtive bulk solubility and hydration behavior of the polymers. Calculation of the work of adhesion with substrates of varying surface free energy parameters indicated that acid-base interactions made a major contribution to the total work of adhesion between cellulose ethers and bipolar surfaces. Changes in surface free energy as a result of the presence of plasticizer or change in solvent compoнsition for EC films were resolvable with the LW/AB approach. Although no direct correlation could be established between the surface free energy parameters and the type of substitution on the celluнlose backbone for the cellulose ethers, the values of the terms derived from the LW/AB approach were consistent with those of cellulose. The LW/AB approach provides a reasonably consistent method for estimating the surface properties of cellulose ethers and the resulting surface free energy parameters are shown to relate to the interfacial properties of the polymers.

678. Springael, S., and F. de Buyl, “Uncured silicone sealant surface energy as determined by contact angle measurements: A new quantitative tool for the assessment of sealant ease of use,” in Contact Angle, Wettability and Adhesion, Vol. 2, K.L. Mittal, ed., 317-330, VSP, Sep 2002.

The behavior of a silicone sealant during its application, from its extrusion from the carнtridge to the completion of the joint, has been identified as a key feature for professional applicators. This feature called “ease of use’* is very complex and includes many different criteria such as the ease of extrusion and joint smoothing, the aesthetic of surface finish, the stringing, and the action of a tooling aid (aqueous solution of surfactant) during the smoothing operation. Several of these criteнria seem directly linked to surface properties of the uncured sealant. In an attempt to translate these subjective properties into quantitative measurements in the laboratory and to understand the underнlying parameters that can be used to control these features, the surface energy of uncured sealants was measured using the solid-liquid contact angle technique. The surface energy data were further correlated with ratings collected from professional applicators with regards to ease-of-use criteria. A correlation was also built between the contact angle values obtained with various tooling aid soluнtions against the surface of the sealant and the ease of smoothing obtained by using these tooling aids at the application stage. The evolution of the contact angle of a water droplet at the surface of uncured sealant with time provided some insights in the understanding of the migration and/or reнorientation of polar entities from the sealant bulk to the sealant surface.

679. Ponter, A.B., K.R. Jinna, M. Asapu, and W.R. Jones Jr., “Surface energy and surface roughness changes produced by irradiating polymers with ultraviolet-ozone,” in Contact Angle, Wettability and Adhesion, Vol. 2, K.L. Mittal, ed., 331-344, VSP, Sep 2002.

The surface energies of poly (methyl methacrylate), polycarbonate and poly (tetrafluoroethylene) which have been exposed to UV radiation in an ambient ozone-air atmosphere have been elucidated from surface tension and contact angle data using these test liquids: ethylene glycol, formamide, glycerol, methylene iodide and water. Comparisons of surface energy values obtained using Kaelble’s two-liquid method, Good’s three-liquid method and Neumann’s macroscopic apнproach are reported. It is tentatively suggested that atmospheric moisture may play a role in producнing discordant values since the test liquids ethylene glycol, formamide and glycerol are highly hyнgroscopic in nature. It has been demonstrated that UV/ozone irradiation produces changes in surface roughness. Poly (tetrafluoroethylene) shows three distinct regions: first, where at low irradiation times the surface roughness is enhanced and following this, the roughness decreases before increasнing finally to a terminal value. The behavior is somewhat similar for polycarbonate although the dramatic increase in roughness exhibited by poly (tetrafluoroethylene) is absent. The roughness characteristics are quite different for poly (methyl methacrylate) where a large change in roughness is observed at only one specific irradiation time. Thus presently it is not possible to predict surface roughness changes for a particular polymer and more studies on the morphological changes occurнring at different surfaces are being carried out.

680. Petri, D.F.S., E.M.A. Pereira, and A.M. Carmona-Ribiero, “Wettability and adhesion of bilayer-forming lipids onto polymeric films,” in Contact Angle, Wettability and Adhesion, Vol. 2, K.L. Mittal, ed., 535-548, VSP, Sep 2002.

700. van Oss, C.J., W. Wu, and R.F. Giese, “Lifshitz-van der Waals, Lewis acid-base and electrostatic interactions in adhesion in aqueous media,” in First International Congress on Adhesion Science and Technology: Festschrift in Honor of Dr. K.L. Mittal on the Occasion of his 50th Birthday, W.J. van Ooij and H.R. Anderson Jr., eds., 49-62, VSP, Dec 1998.

Lifshitz-van der Waals (LW) and Lewis acid-base (AB), together with electrostatic (EL) forces are the non-covalent forces acting in adhesion in condensed phase media, such that the work of adhesion, VEadh= WLW+ WAB+ WEL. In the case of serum albumin (SA) and glass surfaces or silica particles, on a macroscopic scale, WEW> 0, WAB< 0 and WEL< 0, so that W'ddh is negative, ie repulsive. Nonetheless, in aqueous media, at neutral pH, SA adheres to glass surfaces, as well as to silica particles. It may be hypothesized that on a microscopic level, negatively charged, electron-donating SA moieties, located on prominent sites with a small radius of curvature, can penetrate the macroscopic repulsion field and bind to electron-accepting cations imbedded in the glass surfaces (Ca ions) or in silica particles (Si ions). The correctness of the hypothesis is supported by the fact that all adhering SA can be desorbed from, say, silica particles with Na2-EDTA. Furthermore, energy vs. distance diagrams demonstrate that the more prominently located SA sites with a small radius of curvature should indeed be able to overcome the macroscopic repulsion field and to adhere locally to microscopic cationic sites in the glass or silica. Thus, energy vs. distance balances of the extended DLVO type (including AB as well as LW and EL forces), combining macroscopic and microscopic interactions, can be used to predict adhesion in complex systems.

701. Dwight, D.W., “Relationships between interfacial acid-base interactions and adhesive bond strength,” in First International Congress on Adhesion Science and Technology: Festschrift in Honor of Dr. K.L. Mittal on the Occasion of his 50th Birthday, W.J. van Ooij and H.R. Anderson, Jr., eds., 63-80, VSP, Dec 1998.

Acid–base interactions across interfaces are shown to have predictable influences on adhesion. The history of this development, and methods to assay the acid–base character of solvents, polymers and a variety of powders and fibers are reviewed briefly. Recent studies are described that demonstrate directly how acid–base interactions influence both ‘fundamental’ and ‘practical’ adhesion.

773. Bergbreiter, D.E., B. Srinivas, G.-F. Xu, B.C. Ponder, H.N. Gray, A. Bandella, “New approaches for polymer surface modification,” in Polymer Surfaces and Interfaces: Characterization, Modification and Application, K.L. Mittal and K.-W. Lee, eds., 3-18, VSP, Jun 1997.

Synthetic and analytical procedures for the preparation of surface-functionalized polyolefins are described within the general context of polymer surface functionalization. Chemistry leading to simple functionalization of both polyolefins in general and polyethylene in particular is described. Selected examples of further chemistry leading to graft copolymers attached to these surfaces are described. The effects of such graft chemistry leading to various sorts of chemically modified surfaces with different solvent-polymer interactions specific to the graft microstructure and to temperature are discussed.

774. Buchman, A., H. Dodiuk, M. Rotel, and J. Zahavi, “Durability of laser treated reinforced PEEK/epoxy bonded joints,” in Polymer Surfaces and Interfaces: Characterization, Modification and Application, K.L. Mittal and K.-W. Lee, eds., 37-70, VSP, Jun 1997.

Joining of thermoplastic composite primary structures is an area of great importance in the aerospace industry. In order to achieve a strong and durable joint, an effective surface treatment is needed. Preadhesion surface treatment of thermoplastic composites is limited due to their chemical inertness to aggressive chemicals or mechanical treatments. The feasibility of using a new technique of ArF UV (193 nm) excimer laser irradiation as a preadhesion treatment of PEEK (polyaryletheretherketone) reinforced with carbon fibers is demonstrated. This method presents an alternative to other limited and polluting conventional surface treatment methods, such as sand blasting, etching or welding. Experimental results indicated that laser preadhesion treatment significantly improved the shear and tensile adhesion strength of various structural epoxy adhesives FM 300 2K and AF 163-2 bonded to PEEK composite adherends compared with untreated and SiC blasted substrates. Best results were obtained with laser pulse fluences of 0.18 or 1 J/Pcm2. Shear strength of laser treated PEEK composite joints improved by 450% compared with that of untreated PEEK composite and by 200% compared to SiC blasted adherends, at ambient and at—30 C and 120 C temperatures. An order of magnitude improvement was found in the tensile strength of laser treated PEEK composite in a sandwich structure compared to non-treated or abraded sandwich joints. The mode of failure changed from interfacial to cohesive as the number of pulses or laser energy increased during treatment. A similar improvement was achieved in fracture toughness (Mode I and II) performance of laser treated compared to abraded or non-treated PEEK composite adherends. Surface analysis of laser treated adherends and of the fractured joints revealed surface cleaning (XPS), morphology changes (Scanning Electron Microscopy), chemical modification (FTIR spectroscopy and XPS), changes in crystallinity (X-ray) and in wetting property (contact angle), all correlated with the laser irradiation improving the joint’s performance. The bulk properties of the PEEK composite adherend did not deteriorate by the laser irradiation during treatment, as indicated by the identical flexural strength before and after laser treatment. Durability tests showed no change in performance of joints produced from laser treated adherends compared to untreated and abraded ones, even after exposure of 60 days at 60 C/95% RH. It can be concluded that the excimer laser has a potential as a precise, clean and simple preadhesion surface treatment for PEEK composite.

775. Sheu, M.-S., G.M. Patch, I.-H. Loh, and D.A. Buretta, “Tenaciously bound hydrophilic coatings on polymer surfaces,” in Polymer Surfaces and Interfaces: Characterization, Modification and Application, K.L. Mittal and K.-W. Lee, eds., 83-90, VSP, Jun 1997.

Hydrophilic polymer surfaces are desirable for many applications, such as adhesion and wettability. In this study, we have developed a tenaciously bound hydrophilic surface coating which can be applied to a hydrophobic polymer using a plasma treatment process. In this process, porous polyethylene (PE) was used and pretreated with the plasma discharge of an oxidizing gas, eg carbon dioxide. The treated surface, containing mainly anionic groups, was then soaked in a polycation solution, eg polyethyleneimine (PEI). A tenaciously bound hydrophilic coating was formed due to multiple anchors (ionic interactions) between PEI and the plasma-treated surface. The coated surface was characterized using water contact angle goniometry and X-ray photoelectron spectroscopy (XPS). Both the stability and the durability of the coating have been evaluated using various storage conditions and repeated washing in water. The coating process developed in this study is useful in many applications which require a permanent and lasting wettable polymer surface.

776. Wallace, E. Jr., B.B. Sauer, and G.S. Blackman, “Surface analysis of polyester film modified by flame and corona surface treatments,” in Polymer Surfaces and Interfaces: Characterization, Modification and Application, K.L. Mittal and K.-W. Lee, eds., 91-100, VSP, Jun 1997.

Modified surfaces of polyethylene terephthalate)(Mylar® or PET film) have been studied by surface energetics, ESCA, atomic force microscopy (AFM), and optical profilometry. For the surface energetics studies, receding contact angle titrations were used to evaluate the surface functional groups in the outer few angstroms of the surface. This sensitive method of determining the contact angle with buffer solutions of different pHs allows one to investigate the nature of the chemical species introduced by the various energetic treatments. The data are consistent with a surface that is covered by a low density of carboxylic acid moieties in the case of corona and flame treatments, applied in a high-speed commercial type of a process at low doses. The high contact angle hysteresis indicates that the coverage is moderately heterogeneous but on a very small length scale, less than a few micrometers. ESCA qualitatively supported this, although this technique is not optimum for the low degrees of surface modification. A comparison is made of the two surface treatments in terms of depth of penetration, roughness, and surface density of chemical moieties introduced. UV laser-treated surfaces showed no indication of surface chemical modification.

777. Chang, W.V., and X. Qin, “'Repulsive acid-base interactions': Fantasy or reality,” in Acid-Base Interactions: Relevance to Adhesion Science and Technology, Vol. 2, K.L. Mittal, ed., 3-54, VSP, Dec 2000.

778. Della Volpe, C., and S. Siboni, “Troubleshooting of surface free energy acid-base theory applied to solid surfaces: The case of Good, van Oss, and Chaudhury theory,” in Acid-Base Interactions: Relevance to Adhesion Science and Technology, Vol. 2, K.L. Mittal, ed., 55-90, VSP, Dec 2000.

779. Kwok, D.Y., and A.W. Neumann, “Contact angle measurements and contact angle interpretation: Relevance to the thermodynamics of adhesion,” in Acid-Base Interactions: Relevance to Adhesion Science and Technology, Vol. 2, K.L. Mittal, ed., 91-166, VSP, Dec 2000.

780. Good, R.J., “On the acid/base theory of contact angles,” in Acid-Base Interactions: Relevance to Adhesion Science and Technology, Vol. 2, K.L. Mittal, ed., 167-172, VSP, Dec 2000.

781. van Oss, C.J., “Acid-base interactions as the driving force for both hydrophobic attraction and hydrophilic repulsion,” in Acid-Base Interactions: Relevance to Adhesion Science and Technology, Vol. 2, K.L. Mittal, ed., 173-180, VSP, Dec 2000.

782. Chehimi, M.M., M. Delamar, J. Kurdi, F. Arefi-Khonsari, V. Lavaste, and J.F. Wat, “Charaterisation of acid-base properties of polymer surfaces by XPS,” in Acid-Base Interactions: Relevance to Adhesion Science and Technology, Vol. 2, K.L. Mittal, ed., 275-298, VSP, Dec 2000.

783. Etzler, F.M., J. Simmons, N. Ladyzhynsky, V. Thomas, and S. Maru, “Assesment of acid-base character of polymer surfaces from contact angle and other surface chemical data,” in Acid-Base Interactions: Relevance to Adhesion Science and Technology, Vol. 2, K.L. Mittal, ed., 385-394, VSP, Dec 2000.

784. Helt, S., J. Evieux, Y. Baziard, V. Nassiet, and J.-A. Petit, “Characterization of acid-base properties of surfaces by contact angle titration:application to the adhesive bonding of silicon carbide,” in Acid-Base Interactions: Relevance to Adhesion Science and Technology, Vol. 2, K.L. Mittal, ed., 399-418, VSP, Dec 2000.

785. Morra, M, and C. Cassinelli, “Acid-base characteristics of polymer surfaces: relevance to bioadhesion,” in Acid-Base Interactions: Relevance to Adhesion Science and Technology, Vol. 2, K.L. Mittal, ed., 497-512, VSP, Dec 2000.

786. Netravali, A.N., and Q. Song, “Laser surface modification of ultra-high-strength polyethylene fibers: correlation between acid-base interactions and adhesion to epoxies,” in Acid-Base Interactions: Relevance to Adhesion Science and Technology, Vol. 2, K.L. Mittal, ed., 525-538, VSP, Dec 2000.

787. Allred, R.A., and S.P. Wesson, “Effects of acid base interactions on carbon/polycarbonate composite interfacial adhesion,” in Acid-Base Interactions: Relevance to Adhesion Science and Technology, Vol. 2, K.L. Mittal, ed., 551-580, VSP, Dec 2000.

788. Kamath, Y.K., and C.J. Dansizer, “Acid-base interactions in the measurements of surface energies of textile fibers and finish liquids,” in Acid-Base Interactions: Relevance to Adhesion Science and Technology, Vol. 2, K.L. Mittal, ed., 593-600, VSP, Dec 2000.

789. Charbonnier, M., M. Romand, M. Alami, and T.M. Duc, “Surface modification of poly(tetrafluoroethylene) in RF glow-discharge (H2,He,Ar,O2,N2,NH3) plasmas.XPS characterization,” in Polymer Surface Modification: Relevance to Adhesion, Vol. 2, K.L. Mittal, ed., 3-28, VSP, Dec 2000.

As shown from the literature data, plasma treatments of polymer materials create chemical and morphological surface modifications which are strongly dependent on the experimental conditions and on the methods and apparatus configurations employed. In the present work, poly(tetrafluoroethylene) (PTFE) substrates were treated by RF plasma (RIE mode) in various gaseous atmospheres (H2, He, Ar, O2, N2, NH3). The main objective was to compare, under similar experimental conditions, the capabilities of these different gases to modify the morphology of the PTFE surface and to graft specific chemical functionalities for a subsequent metallization through an electroless process. The relevant chemical modifications were characterized by XPS and surface energy measurements while the morphology changes were observed by SEM. Under similar experimental conditions (treatment time, working pressure) and with the reactor operating in the RIE mode, defluorination capabilities of the plasma treatments vary as a function of the gaseous atmosphere according to the following sequence H2 > Ar, NH3 > N2 > He ≫ O2. In addition, O2 and He plasmas are shown to strongly etch the PTFE surface. The very low ability of O2 plasmas to graft oxygenated functionalities is largely due to their strong etching power. A discussion is also focused on the complex interactions between nitrogenated plasmas and PTFE surfaces. Especially, it is shown that nitrogen is not grafted in the same chemical form after an NH3 plasma as after a N2 plasma. Furthermore, after treatment in non-nitrogenated and non-oxygenated plasmas (He, Ar, H2) both nitrogen and oxygen species are grafted on the polymer surface, probably in the molecular form. Such a grafting occurs on venting the reactor with dry nitrogen and on exposing plasma-treated samples to ambient atmosphere.

 

<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | Next-->