Accudynetest logo

Products available online direct from the manufacturer

ACCU DYNE TEST ™ Bibliography

Provided as an information service by Diversified Enterprises.

3040 results returned
showing result page 55 of 76, ordered by
 

500. Kaplan, S.L., “Plasma pretreatment for the painting of plastics,” in Decorating Div. ANTEC 95, Society of Plastics Engineers, 1995.

501. Kaplan, S.L., “Plastics and plasma surface treatment,” in Decorating and Joining of Plastics RETEC, Society of Plastics Engineers, Sep 1995.

505. Klemberg-Sapieha, J.E., et al, “Surface enhancement of polymers by low pressure plasma treatments,” in ANTEC 95, Society of Plastics Engineers, 1995.

522. Maden, S., L.E. McDaniels, and I.R. Harrison, “Surface modifications in polymer - metal laminates,” in ANTEC 90, 1820-1823, Society of Plastics Engineers, 1990.

530. Matuana, L.M., J.J. Balatinecz, and C.B. Park, “Evaluation of adhesion between PVC and surface-treated wood veneer laminates,” in ANTEC 97, Society of Plastics Engineers, 1997.

536. Mier, M.A., and C.G. Seefried, “Surface characterization of corona treated polyethylene films,” in ANTEC 85, Society of Plastics Engineers, 1985.

550. Rawls, A.S., et al, “Evaluation of surface concentration of additives in LLDPE films,” in ANTEC 97, Society of Plastics Engineers, 1997.

554. Sakjhalkar, S.S., and D.E. Hirt, “Surface segregation of erucamide in LLDPE films: Thermodynamic analysis and experimental verification,” in ANTEC 98, Society of Plastics Engineers, Apr 1998.

555. Sanchez-Valdes, S., et al, “Characterization of LLDPE-LLDPEgMA blends by contact angle and FTIR-ATR,” in ANTEC 97, Society of Plastics Engineers, Apr 1997.

559. Schreiber, H.P., et al, “Inverse gas chromatography (IGC): a versatile tool for polymer surface characterization,” in ANTEC 95, Society of Plastics Engineers, Apr 1995.

565. Seaman, R., “Surface preparation by corona discharge: clean, green, and cost-effective,” in Decorating Div. ANTEC 1995, Society of Plastics Engineers, 1995.

573. Sherman, P.B., “Surface preparation techniques,” in Decorating Div. ANTEC 1995, Society of Plastics Engineers, 1995.

575. Sheth, P., “Wettable and dyeable polyolefin technology and application,” in Polyolefins X, Society of Plastics Engineers, Feb 1997.

586. van Ooij, W.J., et al, “Plasma-polymerized organic coatings deposited on metals from a DC plasma; characterization and applications of such surface modifications,” in ANTEC 95, Society of Plastics Engineers, Apr 1995.

590. Vetelino, K.A., et al, “A novel microsensor technique for polymer surface characterization,” in ANTEC 95, Society of Plastics Engineers, 1995.

593. Wallace, E. Jr., et al, “Contact angle titration and ESCA analysis of polyester surfaces modified by flame and corona treatment,” in ANTEC 95, Society of Plastics Engineers, 1995.

594. Walzak, M.J., et al, “Characterization of PP and PET surfaces after exposure to UV light and/or ozone,” in ANTEC 95, Society of Plastics Engineers, 1995.

597. Whitehouse, S.L., “Advances in adhesion of thermoplastic elastomers to other substrates,” in ANTEC 93 (Volume 1), 928-932, Society of Plastics Engineers, 1993.

606. Yoo, D., et al, “Layer-by-layer modification of surfaces through the use of self-assembled monolayers of polyions,” in ANTEC 95, Society of Plastics Engineers, 1995.

882. Petrie, S.P., and E.F. Bardsley, “Epoxy adhesives: Effect of plasma treatment and surface roughness on epoxy to polyethylene bond strength,” in ANTEC 2001 Conference Proceedings, 1175-1178, Society of Plastics Engineers, May 2001.

1001. Chen, B.L., “Slip agents for polyolefin films printed with water-based inks,” in Polyolefins XI, 705-712, Society of Plastics Engineers, 1999.

1016. Kaplan, S.L., “What is gas plasma and should you care?,” in ANTEC '98, 2667-2671 V3, Society of Plastics Engineers, Apr 1998.

Plasma surface treatment of plastics is definitely not new, nor is it commonplace. What is a plasma and what can it do is the subject of the following paper. A plasma is an excited gas, not unlike the aurora borealis. The excited particles that comprise the plasma bombard materials placed within their environment causing permanent change to their surface properties. By the judicious selection of process gas(es) and process parameters, the surface can be reengineered to fit specific needs. This paper presents quantitative analytical data on the chemical changes to the surface of polyethylene subjected to a plasma.

1024. Poon, B., A. Chang, S.P. Chum, L. Tau, W.R. Volkenburgh, A. Hilter, and E. Baer, “Adhesion of polyethylene to polypropylene in multi-layer films,” in ANTEC 2001 Conference Proceedings, 445, Society of Plastics Engineers, 2001.

1041. Morris, B.A., and N. Suzuki, “The case against oxidation as a primary factor for bonding acid copolymers to foil,” in ANTEC 2001 Conference Proceedings, 25-35, Society of Plastics Engineers, 2001.

1074. Tavakoli, S.M., and S.T. Riches, “Laser surface modification of polymers to enhance adhesion, I: Polyolefins,” in Antec '96 Vol. 1, 1219-1224, Society of Plastics Engineers, May 1996.

1172. Inagaki, N., and K. Narushima, “Surface modification of aromatic polyester films for copper metallization,” in PMSE Preprints Volume 94, Spring 2006, Society of Plastics Engineers, Mar 2006.

1459. Ke-Chang, G., and Z. Shao-Hua, “Plasma treatment on polytetrafluoroethylene and the adhesion property,” in Antec '88, 1555-1558, Society of Plastics Engineers, Apr 1988.

1461. Rose, P.W., and E. Liston, “Gas plasma technology and surface treatment of polymers prior to adhesive bonding,” in Antec '85, 685-688, Society of Plastics Engineers, May 1985.

1542. Wolf, R.A., “Surface activation systems for optimizing adhesion to polymers,” in SPE Decorating and Assembly Div. Topcon, Society of Plastics Engineers, Jun 2004 (also in 2005 PLACE Conference Proceedings, TAPPI Press, 2005, and Plastics Decorating, p. 7-10, Apr 2009).

Many experiments have been performed globally to investigate ways of improving adhesion to polymers. This paper discusses current atmospheric surface activation systems, appropriate measurements of wettability and adhesion, over-treatment effects and surface analysis techniques relative to optimizing the adhesion of inks, paints, coatings and adhesives to polymer surfaces. Recommendations for improved activation by substrate and application are discussed.

1557. Wolf, R.A., “Advances in adhesion with CO2-based atmospheric plasma surface modification,” in ANTEC 2007, Society of Plastics Engineers, May 2007.

The use of gas and/or liquid-phase carbon dioxide (CO2) with atmospheric plasma discharge surface pretreatment technology can remove micron and submicron particulates and hydrocarbon-based contaminations on plastics and metals. The cleaning process is based upon the expansion of either liquid or gaseous carbon dioxide through an orifice. The paper provides an understanding of the basic removal mechanism and provides experimental evidence of remarkable adhesion improvements relative to a broad range of applications in electrical, medical, and automotive manufacturing communities.

1558. DiGiacomo, J.D., “Adhesion promotion using flame plasma surface treatment,” in ANTEC 2007, Society of Plastics Engineers, May 2007.

2846. Zhai, M., and G.B. McKenna, “Surface energy of a polyurethane as a function of film thickness,” Presented at ANTEC - The Plastics Conference, Apr 2014.

73. Decker, W., S. Pirzada, M. Michael, and A. Yializis, “Long lasting surface activation of polymer webs,” in 43rd Annual Technical Conference Proceedings, Society of Vacuum Coaters, 2000.

Surface activation of polymer films to modify surface properties is widely practiced to enhance wettability, printability and adhesion properties of these films. Sigma Technologies has been actively pursuing the area of longlasting activation of polymer films using various techniques including plasma technology. Atmospheric glow discharge plasma technology has been a recent addition towardsthese efforts. Plasma activation using a variety of precursors has been investigated for long lasting functionilization of various substrates. Latest developments in the area of surface activation of polymer films will be presented.

1115. Grace, J.M., Plasma Web Treatment, Society of Vacuum Coaters, Mar 2005.

1408. d'Agostino, R., et al, “Plasma treatment of PET for improving Al-adhesion,” in 41st Annual Technical Conference Proceedings, Society of Vacuum Coaters, 1998.

1410. Cassio, V., amd F. Rimediotti, “Plasma pre-treatment in aluminum web coating: A converter experience,” in 42nd Annual Technical Conference Proceedings, Society of Vacuum Coaters, 1999.

1411. Decker, W., and A. Yializis, “Surface functionalization of polymer films and webs using subatmospheric plasma,” in 41st Annual Technical Conference Proceedings, 355-357, Society of Vacuum Coaters, 1998.

Plasma treatment is a common process for cleaning, etching and chemically functionalizing surfaces of polymer films. High speed plasma treatment is performed at atmospheric and subatmospheric pressure with a treatment device combining magnetic and hollow cathode effects, which enhance the gas ionization and focus and direct the plasma energy onto the surface of the moving web. Plasma treated polymer films show highly increased micro roughness. Polymer films metallized after plasma treatment exhibit highly improved adhesion between polymer and metal and better oxygen and water vapor barrier behaviour. Fabrics can be treated to attain hydrophilic or hydrophobic properties.

1416. Pirzada, S.A., A. Yializis, W. Decker, and R.E. Ellwanger, “Plasma treatment of polymer films,” in 42nd Annual Technical Conference Proceedings, 301+, Society of Vacuum Coaters, Apr 1999.

1513. Barankova, H., and L. Bardos, “Cold atmospheric plasma sources for surface treatment,” in 46th Annual Technical Conference Proceedings, 427-430, Society of Vacuum Coaters, 2003.

1516. Kaplan, S.L., “Cold gas plasma treatment of films, webs and fabrics,” in 41st Annual Technical Conference Proceedings, 345-348, Society of Vacuum Coaters, 1998.

 

<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | Next-->