Accudynetest logo

Products available online direct from the manufacturer

ACCU DYNE TEST ™ Bibliography

Provided as an information service by Diversified Enterprises.

3043 results returned
showing result page 65 of 77, ordered by
 

2116. Smith, R.E., “Surface treatment discussion,” http://www.accudynetest.com/surface_treatment.html, Mar 2009.

2117. Smith, R.E., “Recommended treatment levels for various polymer/process combinations,” http://www.accudynetest.com/recommended_treat_levels.html, Mar 2009.

2118. Smith, R.E., “Polymer tables,” http://www.accudynetest.com/polymer_tables.html, Mar 2009.

2119. Smith, R.E., “Critical surface tension, surface free energy, contact angles with water, and Hansen Solubility Parameters for various polymers,” http://www.accudynetest.com/polytable_01.html, Mar 2009.

2120. Smith, R.E., “Surface free energy components by polar/dispersion and acid-base analysis, and Hansen Solubility Parameters for various polymers,” http://www.accudynetest.com/polytable_02.html, Mar 2009.

2121. Smith, R.E., “Critical surface tension and contact angle with water for various polymers,” http://www.accudynetest.com/polytable_03.html, Mar 2009.

2737. Mukhopadhyay, S., and R. Fangueiro, “Physical modification of natural fibers and thermoplastic films for composites - a review,” J. Thermoplastic Composite Materials, 22, 135-162, (Mar 2009).

The article throws light on the physical methods to modify natural fibers to be used in composites. Physical methods in natural fiber processing are used to separate natural fiber bundles into individual filaments and to modify the surface structure of the fibers so as to improve the use of natural fibers in composites. Steam explosion and thermomechanical processes fall in the first category while plasma, dielectric barrier techniques and corona fall in the second. The physical treatments have also been used to modify the thermoplastic polymeric films like polyethylene and polypropylene in a bid to impart reactivity. Reviewing such developments, the areas for further research are suggested.

2766. Custodio, J., J. Broughton, H. Cruz, and P. Winfield, “Activation of timber surfaces by flame and corona treatments to improve adhesion,” International J. of Adhesion and Adhesives, 29, 167-172, (Mar 2009).

Long-term durability of a structural adhesive joint is an important requirement, because it has to be able to support the required design loads, under service conditions, for the planed lifetime of the structure. One way of improving bond durability is through the use of surface treatments prior to bonding, which will activate the adherends’ surface, making it more receptive to the adhesive. In this study, the effects of two surface pre-treatments (corona discharge and flame ionization) on three timbers (maritime pine, iroko, and European oak) were evaluated quantitatively through contact angle measurements. These measurements allowed the determination of the changes in the timber surface thermodynamic characteristics, thus indicating which pre-treatment performed better. The results showed that both techniques increased each timber's surface free energy, which could translate into a durability enhancement of bonded joints. Overall, the corona-discharge treatment looks more promising, since this treatment leads to a bigger increase in the timber's surface energy, especially in its polar component, whilst also tended to be less species specific, less susceptible to variation, and the treatment effects lasted longer for this type of treatment.

1065. Lee, K.T., J.M. Goddard, and J.H. Hotchkiss, “Plasma modification of polyolefin surfaces,” Packaging Science and Technology, 22, 139-150, (Apr 2009).

In order to functionalize the surface of blown low-density polyethylene (LDPE) and cast polypropylene (CPP) films, and ultimately to maximize the attachment of active molecules onto them, the optimum treatment parameters of capacitively-coupled radio-frequency (13.56 MHz) oxygen plasma were investigated by using contact angle, toluidine blue dye assay, X-ray Photoelectron Spectroscopy (XPS) and Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR). Contact angle values of LDPE and CPP samples decreased significantly after oxygen plasma treatment. They further decreased as the plasma power level increased. The treatment time had no substantial effect on contact angle value. The optimum treatment conditions for LDPE and CPP films for maximizing carboxyl functionality without causing observable surface changes were found to be 200 W/200 mTorr and 250 W/50 mTorr, respectively, when treated for 3 min. The maximum carboxyl group concentration obtained with LDPE and CPP films were 0.46 and 0.56 nmol/cm2, respectively. The percent of oxygen atoms on the surface of plasma-treated LDPE and CPP films was determined by XPS analysis to be 22.6 and 28.7%, respectively. The ATR-FTIR absorption bands at 1725–1700 cm−1 confirmed the presence of carboxylic acids on LDPE and CPP films. By exposing the plasma-treated sample to air rather than water and treating films repeatedly with oxygen plasma, a higher carboxyl group concentration could be obtained. Copyright © 2008 John Wiley & Sons, Ltd. https://onlinelibrary.wiley.com/doi/abs/10.1002/pts.829

2106. Kos, S., “Outlook on surface treatment's future,” http://www.flexpackmag.com/CDA/Articles, Apr 2009.

2107. Kos, S., “Newest surface treaters achieve higher dyne levels, higher ROI,” Flexible Packaging, 11, 22-25, (Apr 2009).

2125. Smith, R.E., “DuNouy tensiometer test method,” http://www.accudynetest.com/tensiometer_test_method.html, Apr 2009.

2126. Smith, R.E., “Introduction to tensiometry,” http://www.accudynetest.com/tensiometry_introduction.html, Apr 2009.

2155. Mark, J.E., ed., Polymer Data Handbook, 2nd Ed., Oxford Univ. Press, Apr 2009.

2173. Bishop, C.A., “Polymers, surface energy, chemistry and adhesion,” http://vacuumcoatingblog.co.uk/2009/04/index.html, Apr 2009.

2248. Park, S.-J., H.-J. Sohn, S.-K. Hong, and G.-S. Shin, “Influence of atmospheric fluorine plasma treatment on thermal and dielectric properties of polyimide film,” J. Colloid and Interface Science, 332, 246-250, (Apr 2009).

Plasma treatment of polyimide surfaces not only causes structural modification during the plasma exposure, but also leaves active sites on the surfaces that are subject to post-reaction. In this work, the effects of atmospheric fluorine plasma treatment on the surface properties and dielectric properties of polyimide thin film were investigated by using X-ray photoelectron spectroscopy (XPS), Fourier transform-IR (FT-IR) spectroscopy, and contact angle measurement. The results indicated that plasma treatment successfully introduced fluorine functional groups on the polyimide surfaces. The polyimides also exhibited good thermal stability and a lower dielectric constant. It appears that the replacement of fluorine led to the decrease of the local electronic polarizability of polyimide. Consequently, it was found that the atmospheric fluorine plasma-treated polyimides possessed lower dielectric characteristics than the untreated polyimides.

2564. Zhang, C., and K. Fang, “Surface modification of polyester fabrics for inkjet printing with atmospheric-pressure air/Ar plasma,” Surface and Coatings Technology, 203, 2058-2063, (Apr 2009).

Without any preprocessing, polyester fabric has a lower ability to hold on water and inks due to the smooth morphology and chemistry property of polyester fibers. Therefore, patterns directly printed with pigment inks have poor color yields and bleed easily. Plasma surface treatment of polyester fabrics was carried out in composite atmosphere with air and 10% Ar under different experimental conditions. After plasma treatment the samples were printed with pigment inks. The results show that surface-modified polyester fabrics exhibited enhanced color yields and excellent pattern sharpness. SEM and XPS analyses indicated that this improved color performance was mainly contributed by not only the etching effect but also oxygen-containing polar groups induced onto fiber surfaces through plasma treatment. Thereby the surface modification of polyester fabrics using air/Ar plasma offers a potential way to fabric pretreatment for pigment inkjet printing with the advantages of environmental friendly and energy saving over traditional pretreatment methods.

2870. Jacobsen, J., M. Keif, X. Rong, J. Singh, and K. Vorst, “Flexography printing performance of PLA film,” J. Applied Packaging Research, 3, 91-104, (Apr 2009).

During the past decade polylactide acid (PLA) polymer has been the subject of numerous researches aimed at comparing it with traditional petroleum based polymers for many packaging applications. PLA is biodegradable and derived from agricultural by-products such as corn starch or other starch-rich substances like maize, sugar or wheat.While PLA is currently being used in many packaging applications with well documented performance, little work has been done comparing printing processes and performance. This study presents PLA printing performance and sustainability findings using the common flexography printing process. Various analytical methods were used to evaluate performance and provide recommendations for optimized printing on PLA as compared to PET, oriented PP and oriented PS. Results of this study found that PLA films were comparable in printability and runnability to standard petroleum based flexible packaging films.

836. Abenojar, J., R. Torregrosa-Coque, M.A. Martinez, and J.M. Martin-Martinez, “Surface modifications of polycarbonate (PC) and acrylonitrile butadiene styrene (ABS) copolymer by treatment with atmospheric plasma,” Surface and Coatings Technology, 203, 2173-2180, (May 2009).

Two engineering thermoplastic polymers (polycarbonate, PC, and acrylonitrile butadiene styrene copolymer, ABS) were treated with atmospheric plasma torch using different treatment rates (1, 5 and 10 m/min). The modifications produced by the treatment were analysed by contact angle measurements, XPS, SEM and ATR-IR spectroscopy. Particular emphasiswas placed on the ageing (up to 30 days) after atmospheric plasma treatment on both polymers. The slower the atmospheric plasma treatment, the greater the wettability of the treated polymers. The decrease in water contact angle was mainly ascribed to a significant increase in oxygen content due to the formation of carboxylic and hydroxyl groups and a decrease in the carbon content on the polymer surfaces. After natural ageing, there was an increase in the water contact angle, although the values of the untreated polymer surface were never reached.

2153. no author cited, “Contact angle measurements,” ASTM Standardization News, 37, 51, (May 2009).

2154. Schoff, C.K., “Coatings clinic: Interfaces and migration,” JCT CoatingsTech, 6, 48, (May 2009).

2189. Wolf, R.A., “Plasma power,” http://pffc-online.com/surface_prep/corona_flame_plasma/paper-plasma-power-0509, May 2009.

2758. Lahti, J., “The effects of corona and flame treatment II: PE-HD and PP coated papers,” in 12th TAPPI European PLACE Conference Proceedings, 278-314, TAPPI Press, May 2009.

The most important function of a packaging material is to shield the product inside the package. Extrusion coated papers and paperboards are generally used in various consumer packages like food, medical and cosmetic packages. Extrusion coatings give a barrier against water, water vapour, aroma, grease, oxygen, etc. In addition to barrier properties, heat sealability and printability are important properties in packaging applications. From the point of view of printing, the dense and impervious structure of extrusion coatings is challenging: printing inks and toners do not penetrate into the coatings. The durability of the printed image is significant, because the image must withstand various converting operations when the package is constructed. The most common method for obtaining good ink or toner adhesion is to oxidise the surface. Surface treatments are used to change the chemical composition, increase surface energy, modify surface morphology and topography, or remove contaminants and weak boundary layers. Two widely used methods are corona discharge treatment and flame treatment. These processes generally cause physical and chemical changes in a thin surface layer without affecting the bulk properties. Treatments will increase surface energy and also provide polar molecular groups necessary for good bonds between ink/toner and polymer molecules. In addition to printability, surface treatments also affect the sealing properties, i.e. initial heat sealing temperature, initial hot tack temperature, sealing window and seal strength of extrusion coatings. Both the sealability of packaging material and the tightness of the seal are critical points in the manufacturing process of packages and of the final package. The printability must be obtained without losing the sealability properties. In the first part of this research (TAPPI European PLACE 2007), surface energy, printability and sealability of low density polyethylene (PE-LD) coated paperboard after flame and corona treatments were studied. In this second part of the study, the research is extended to other polyolefins, i.e. high-density polyethylene (PE-HD) and polypropylene (PP). The surface chemistry is evaluated with contact angle measurements and X-ray photoelectron spectroscopy (XPS) measurements. Scanning electron microscopy (SEM) and optical profilometry are used to study the topographical and morphological changes on the surfaces. Furthermore, the heat sealing and hot tack properties, and water vapour barrier properties of the extrusion coatings are evaluated. The aim of this study is also to evaluate the printability of the extrusion coatings and to map out the role of surface modification in print quality formation. This study has concentrated on digital printing, particularly on the dry toner-based electrophotographic printing process. Flame treatment decreases the contact angle of water on PE-LD, PE-HD and PP coated papers more than corona treatment, but the lowest contact angle is obtained when the treatments are used simultaneously (i.e. co-effect of the treatments). Flame treatment deteriorates the sealability properties of PE-LD coated paper, whereas corona treatment improves sealability for example by decreasing the minimum heat sealing temperature. The sealability properties of PE-HD and PP coated papers are improved not only by corona treatment, but also by flame treatment. Flame treatment significantly improves the water vapour barrier of PEs. Where printability is concerned, it can be noticed that all the treatments improve rub-off resistance with PEs. With PE-LD flame is the most effective, and with PE-HD corona. With PP, the co-treatment gives the best result. Morphological changes in micro- and nano- scale were most observed on the flame treated PE-LD surface, whereas the electret phenomenon was observed on PE-LD, PE-HD and PP surfaces only after corona treatment.

804. Jacobs, T., R. Morent, N. De Geyter, and C. Leys, “Effect of He/CF4 DBD operating parameters on PET surface modification,” Plasma Processes and Polymers, 6, S412-S418, (Jun 2009).

In this paper, a dielectric barrier discharge (DBD) operated at (sub)atmospheric pressure in a 95/5% He/CF4 mixture is employed to increase the hydrophobicity of a poly(ethylene terephthalate) (PET) film. This paper studies the influence of different operating parameters on the hydrophobic properties of the PET film using contact angle measurements. Results clearly show that the hydrophobicity of the PET film is only enhanced when using large gas flows. Moreover, this work demonstrates that operating pressure and discharge power have a significant influence on the rate of plasma modification as well as on the uniformity of the plasma treatment. Also important to mention is that no ageing effect is observed. As a result, one can conclude that the utilized DBD is an efficient tool to create stable, hydrophobic PET surfaces.

820. Zenkiewicz, M., J. Richert, P. Rytlewski, and K. Moraczewski, “Some effects of corona plasma treatment of polylactide/montmorillonite nanocomposite films,” Plasma Process and Polymers, 6, S387-S391, (Jun 2009).

Influence of the unit energy (Eu) of corona discharge used for modification of pure polylactide (PLA) and polylactide nanocomposite (PLAC) containing 5 wt% of an aluminosilicate nanofiller (Cloisite 30B) on water (ΘW) and diiodomethane (ΘD) contact angles as well as on surface free energy (γs) of these polymers was studied. ΘW and ΘD as advancing contact angles were measured with use of a goniometer while γs was calculated by the Owens–Wendt method. It was found that ΘW increased with the rising Eu while ΘD remained approximately constant. Assuming Eu = const, it could be stated that the increase in γs was much more evident for PLA than for PLAC. This increase resulted practically from the change in the polar component of γs because the dispersive component for the two materials only slightly decreased with increase in Eu.

830. Borges, J.N., T. Belmonte, J. Guillot, D. Duday, M. Moreno-Couranjou, P. Choquet, and H.-N. Migeon, “Functionalization of copper surfaces by plasma treatments to improve adhesion of epoxy resins,” Plasma Processes and Polymers, 6, S490-S495, (Jun 2009).

Adhesion of epoxy resins on copper foils for printed circuit board (PCB) applications is improved by nearly a factor of 5, using surface cleaning and deposition of a 15-nm-thick film in a low-pressure remote plasma-enhanced chemical vapor deposition process. The cleaning pretreatment, using an N2–O2 oxidizing gas mixture with moderate heating (343 K), gives the best results. This pretreatment removes the carbonaceous contaminants present on the topmost surface of the sample and slightly oxidizes the copper into CuO. This oxide is then reduced during the deposition treatment, presumably by reaction with the aminopropyltrimethoxysilane (APTMS) precursor. The surface roughness is unchanged after treatment, thereby showing that the improvement of the copper/epoxy adhesion is only due to the chemistry of the plasma coating. Applying these results to dielectric barrier discharges allows us to achieve the same level of adhesion, which, therefore, does not depend on the process.

1639. Tyczkowski, J., J. Zielinski, A. Kopa, I. Krawczyk, and B. Wozniak, “Comparison between non-equilibrium atmospheric-pressure and low-pressure plasma treatments of poly(styrene-butadiene-styrene),” Plasma Processes and Polymers, 6, S419-S424, (Jun 2009).

Low-pressure plasma generated in a typical parallel plate reactor and atmospheric pressure plasma produced by a plasma needle were utilized to modify the surface of poly(styrene–butadiene–styrene) (SBS) elastomers. An RF discharge (13.56 MHz) in helium was used in the both cases. The SBS surfaces were investigated by T-peel tests, contact-angle measurements, and IRS–FTIR spectroscopy. It has been found that such plasma treatments drastically improve the strength of adhesive-bonded joints between the SBS surfaces and polyurethane adhesives, however, the plasma needle operation has turned out to be more effective. The molecular processes proceeding on the SBS surfaces have been briefly discussed.

1646. Borris, J., A. Dohse, A. Hinze, M. Thomas, C.-P. Klages, A. Mobius, D. Elbick, and E.-R. Weidlich, “Improvement of the adhesion of a galvanic metallization of polymers by surface functionalization using dielectric barrier discharges at atmospheric pressure,” Plasma Processes and Polymers, 6, S297-S301, (Jun 2009).

An environmentally friendly plasma amination process for the activation of polymers prior to electroless metallization using dielectric barrier discharges (DBD) at atmospheric pressure was investigated. One focus of the work was on the correlation between plasma parameters and palladium coverage on the polymer on the one hand and the palladium coverage and adhesion of a galvanic copper metallization on the other hand. Using XPS spectroscopy it was found that a DBD treatment of polyimide (PI) films with mixtures of N2 and H2 leads to considerably higher Pd surface concentrations than on untreated reference samples or foils treated in air-DBD. The Pd coverages achieved result in peel strengths of a copper metallization of up to 1.4 N · mm−1.

2156. no author cited, “New web treatment process combines corona and coating,” Plastics Technology, 55, 21, (Jun 2009).

2157. no author cited, “Two new coatings-related standards released by ASTM International,” JCT CoatingsTech, 6, 19, (Jun 2009).

2161. Glogauer, S., “Plasma and adhesion to rubber, plastics substrates,” Rubber and Plastics News, 38, 16-19, (Jun 2009).

World-class, fully automated manufacturing processes rely more and more on advanced, environmentally friendly surface treatment technologies. An innovative atmospheric pressure plasma technique allows inline rubber and plastic manufacturing processes to become fully automated with total process control. A thorough pretreatment must produce surfaces with reliable and repeatable characteristics to achieve optimal adhesive bonding, coating and printing results. In addition, pretreatment must be delivered in a cost-effective and safe manner. The new process uses the high effectiveness of plasma for microfine cleaning, high-surface activation and nanocoating. In most cases the plasma application takes the place of environmentally unfriendly and costly solvent cleaning or chemical adhesion promoters and primers.

2732. Gonzalez, E. II, M.D. Barankin, P.C. Guschl, and R.F. Hicks, “Ring opening of aromatic polymers by remote atmospheric-pressure plasma,” IEEE Transactions on Plasma Science, 37, 823-831, (Jun 2009).

A low-temperature, atmospheric pressure oxygen and helium plasma was used to treat the surfaces of polyetheretherketone, polyphenylsulfone, polyethersulfone, and polysulfone. These aromatic polymers were exposed to the afterglow of the plasma, which contained oxygen atoms, and to a lesser extent metastable oxygen (^1δg O2) and ozone. After less than 2.5 seconds treatment, the polymers were converted from a hydrophobic state with a water contact angle of 85±5 to a hydrophilic state with a water contact angle of 13±5 . It was found that plasma activation increased the bond strength to adhesives by as much as 4 times. X-ray photoelectron spectroscopy revealed that between 7% and 27% of the aromatic carbon atoms on the polymer surfaces was oxidized and converted into aldehyde and carboxylic acid groups. Analysis of polyethersulfone by internal reflection infrared spectroscopy showed that a fraction of the aromatic carbon atoms were transformed into C=C double bonds, ketones, and carboxylic acids after plasma exposure. It was concluded that the oxygen atoms generated by the atmospheric pressure plasma insert into the double bonds on the aromatic rings, forming a 3-member epoxy ring, which subsequently undergoes ring opening and oxidation to yield an aldehyde and a carboxylic acid group.

2548. Little, U., F. Buchanon, E. Harkin-Jones, B. Graham, B. Fox, et al, “Surface modification of poly(epsilon-capralactone) using a dielectric barrier discharge in atmospheric pressure glow discharge mode,” Acto Biomaterialia, 5, 2025-2032, (Jul 2009).

The role of roughening and functionalization processes involved in modifying the wettability of poly(ε-caprolactone) (PCL) after treatment by an atmospheric pressure glow discharge plasma is discussed. The change in the ratio of CDouble BondO/C–O bonds is a significant factor influencing the wettability of PCL. As the contact angle decreases, the level of CDouble BondO bonds tends to rise. Surface roughness alterations are the driving force for lasting increases in wettability, while the surface functional species are shorter lived. We can approximate from ageing that the increase in wettability for PCL after plasma treatment is 55–60% due to roughening and 40–45% due to surface functionalization for the plasma device investigated.

2162. Polischuk, T., “Better treatment: Green Bay Packaging uses treating to increase folder/gluer productivity,” Package Printing, 56, 18-20, (Aug 2009).

2897. Kalantarian, A., R. David, and A.W. Neumann, “Methodology for high accuracy contact angle measurement,” Langmuir, 25, 14146-14154, (Aug 2009).

A new version of axisymmetric drop shape analysis (ADSA) called ADSA-NA (ADSA-no apex) was developed for measuring interfacial properties for drop configurations without an apex. ADSA-NA facilitates contact angle measurements on drops with a capillary protruding into the drop. Thus a much simpler experimental setup, not involving formation of a complete drop from below through a hole in the test surface, may be used. The contact angles of long-chained alkanes on a commercial fluoropolymer, Teflon AF 1600, were measured using the new method. A new numerical scheme was incorporated into the image processing to improve the location of the contact points of the liquid meniscus with the solid substrate to subpixel resolution. The images acquired in the experiments were also analyzed by a different drop shape technique called theoretical image fitting analysis-axisymmetric interfaces (TIFA-AI). The results were compared with literature values obtained by means of the standard ADSA for sessile drops with the apex. Comparison of the results from ADSA-NA with those from TIFA-AI and ADSA reveals that, with different numerical strategies and experimental setups, contact angles can be measured with an accuracy of less than 0.2°. Contact angles and surface tensions measured from drops with no apex, i.e., by means of ADSA-NA and TIFA-AI, were considerably less scattered than those from complete drops with apex. ADSA-NA was also used to explore sources of improvement in contact angle resolution. It was found that using an accurate value of surface tension as an input enhances the accuracy of contact angle measurements.

2174. Bishop, C.A., “Question about cleaning electrodes,” http://vacuumcoatingblog.co.uk/2009/09/index.html, Sep 2009.

2524. Mix, R., J.F. Friedrich, and A.Rau, “Polymer surface modification by aerosol based DBD treatment of foils,” Plasma Processes and Polymers, 6, 566-574, (Sep 2009).

The effect of different nebulized liquids directly introduced into the dielectric barrier discharge (DBD) was compared with simple air DBD treatment of polyethylene foils. Water, alcohols and aqueous solutions of different organic substances (environmentally compatible) and water soluble polymers were applied as aerosols and injected into the DBD zone. The DBD residence time (number of treatment cycles) and the power were varied. The durability of the surface modification effect was studied after removing of Low-Molecular Weight Oxidized Material (LMWOM) by washing the samples with water and ethanol. The modified foils were characterized by XPS and contact angle measurements as a function of the applied plasma conditions. The concentration of functional groups at modified surfaces was estimated by derivatization and subsequent XPS measurement.

2606. Sooy, J., “Like the Phoenix: Corona Designs rises from the ashes,” Converting, 27, (Oct 2009).

2900. Seveno, D., A. Vaillant, R. Rioboo, H. Adao, J. Conti, and J. DeConinck, “Dynamics of wetting revisited,” Langmuir, 25, 13034-13044, (Oct 2009).

We present new spreading-drop data obtained over four orders of time and apply our new analysis tool G-Dyna to demonstrate the specific range over which the various models of dynamic wetting would seem to apply for our experimental system. We follow the contact angle and radius dynamics of four liquids on the smooth silica surface of silicon wafers or PET from the first milliseconds to several seconds. Analysis of the images allows us to make several hundred contact angle and droplet radius measurements with great accuracy. The G-Dyna software is then used to fit the data to the relevant theory (hydrodynamic, molecular-kinetic theory, Petrov and De Ruijter combined models, and Shikhmurzaev’s formula). The distributions, correlations, and average values of the free parameters are analyzed and it is shown that for the systems studied even with very good data and a robust fitting procedure, it may be difficult to make reliable claims as to the model which best describes results for a given system. This conclusions also suggests that claims based on smaller data sets and less stringent fitting procedures should be treated with caution.

2801. Hild, F., “Surface energy of plastics,” https://www.tstar.com/blog/bid/33845/Surface-Energy-of-Plastics, Dec 2009.

 

<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | Next-->