Accudynetest logo

Products available online direct from the manufacturer

ACCU DYNE TEST ™ Bibliography

Provided as an information service by Diversified Enterprises.

3043 results returned
showing result page 55 of 77, ordered by
 

2936. Wapner, P.G., and W.P. Hoffman, “Liquid to solid angle of contact measurement,” U.S. Patent 6867854, Mar 2005.

A liquid to solid material surface contact angle measurement system operating by way of detecting a transition in the behavior of a liquid sample with the solid material in a changing angular confinement environment along with use of a mathematical algorithm to then determine contact angle. Measurement of the angle at which the tested liquid transitions between apparent wetting and apparent non-wetting behavior, regardless of whether the liquid and solid material are truly classified as wetting or non-wetting, provides a measurement from which disclosed mathematical algorithms can predict the surface wetting characteristics of the liquid on the solid material. Automated performance of the confinement environment measurement and examples are included.

3001. Cui, N.-Y., D.J. Upadhyay, C.A. Anderson, and N.M.D. Brown, “Study of the surface modification of a nylon-6,6 film processed in an atmospheric pressure air dielectric barrier discharge,” Surface and Coatings Technology, 192, 94-100, (Mar 2005).

A Nylon-6,6 film has been treated using an atmospheric pressure air dielectric barrier discharge (DBD). The resultant surface modifications were studied using X-ray photoelectron spectroscopy (XPS), contact angle measurement and secondary ion mass spectrometry (SIMS). The surface oxidation arising in the DBD discharge was found to arise in two stages: in the first stage, the creation of the carbon sites singly bonded to oxygen is dominant, the second stage leads to further conversion of such lightly oxidised carbons to those more heavily oxidised. The marked increase found in the hydrophilicity of the surface post-treatment is in the main believed to be associated with the earlier outcome. Partial recovery of the surface contact angle values is found for the treated samples following extended storage in ambient air. The final contact angle obtained for the treated samples was ∼50°, still reduced significantly from that of 83.5° for the untreated material.

1117. Ryu, D.Y., K. Shin, E. Drockenmuller, C.J. Hawker, and T.P. Russell, “A generalized approach to the modification of solid surfaces,” Science, 308, 236-238, (Apr 2005).

Interfacial interactions underpin phenomena ranging from adhesion to surface wetting. Here, we describe a simple, rapid, and robust approach to modifying solid surfaces, based on an ultrathin cross-linkable film of a random copolymer, which does not rely on specific surface chemistries. Specifically, thin films of benzocyclobutene-functionalized random copolymers of styrene and methyl methacrylate were spin coated or transferred, then thermally cross-linked on a wide variety of metal, metal oxide, semiconductor, and polymeric surfaces, producing a coating with a controlled thickness and well-defined surface energy. The process described can be easily implemented and adapted to other systems.

1118. Fontelera, J., “Scratching the surface,” Converting, 23, 66-70, (Apr 2005).

1390. Podhajny, R.M., “Which ink for which substrate?,” Paper Film & Foil Converter, 79, (Apr 2005).

2535. Choi, Y.-H., J.-H. Kim, K.-H. Pek, W.-J. Ju, and Y.S. Hwang, “Characteristics of atmospheric pressure N2 cold plasma torch using 60-Hz AC power and its application to polymer surface modification,” Surface and Coatings Technology, 193, 319-324, (Apr 2005).

Atmospheric pressure N2 cold plasmas are generated with a torch-type generator using 60-Hz AC power. High flow rate N2 gas is injected into the plasma generator and high voltage of about 2 kV is introduced into the power electrode through transformer. Discharge characteristics of N2 cold plasma, such as current–voltage profile, gas temperature and radial species in plasma, are measured. As one possible application, the N2 cold plasma is used to modify the surface of polymer, especially polypropylene, for adhesion improvement. Power dissipation in discharge has the maximum value at optimal power electrode position, z=3 mm, which lead to the generation of more energetic electrons capable of creating N2* and N2+ excited states in plasmas effectively. These excited species can induce high population of oxygen and nitrogen atoms on polymer surface through creation of polymer excited states. Maximum bonding strength about 10.5 MPa is obtained at optimal power electrode position.

688. Zenkiewicz, M., “Wettability and surface free energy of a radiation-modified polyethylene film,” Polimery, 50, 365-370, 406, (May 2005).

Effects of the electron radiation generated by a high-voltage linear accelerator on wettability and surface free energy (SFE) of low-density polyethylene (PE-LD) film were studied. Radiation doses of 25, 50, 100, 250, and500 kGy were used. Water, glycerol, formamide, diiodomethane, and α-bromonaphthalene were applied as measuring liquids for contact angle measurements. The calculations of SFE were made by Owens-Wendt and van Oss-Chaudhury-Good methods, using the results of measurements of contact angle with various systems of the measuring liquids. Wettability tests were also performed. It was found that the contact angle decreased with the rising radiation dose for all the measuring liquids and the shapes of these dependences were similar. However, significant quantitative differences were observed. The largest changes in the contact angle were detected for the dose range of up to 50 kGy. SFE values when measured by different methods and various measuring liquids differed generally in the whole range of the doses applied. Therefore, the surface free energy cannot be accepted as an absolute measure of the thermodynamic state of the surface layer of radiation-modified PE-LD film. Its values can be compared with one another only when they were determined using the same method and the same measuring or standard liquids.

1174. Gregory, B.H., Extrusion Coating: A Process Manual, Trafford Publishing, May 2005.

2015. Kuhn, A., “Starting off with a clean slate: Using dyne liquids is one of the easiest and most cost-effective means of assessing surface cleanliness,” Metal Finishing, 103, 72-79, (May 2005).

2417. Washebeck, R.J., and R.A. Kleinschmidt, “Narrow web corona treater,” U.S. Patent 6894279, May 2005.

A corona discharge device is adapted to be used in conjunction with a printing press. The device includes a cabinet housing an on-board power supply associated with a high voltage transformer. A rear end plate and a front end plate spaced apart in parallel relationship from the rear end plate both depend from the cabinet. An electrode support tube is fixedly mounted to the cabinet and has an electrode magazine slidably mounted on the support tube between an operative position and an inoperative position, the magazine including a series of parallel electrodes. A grounded treater roll is rotatably mounted on a first shaft between the rear end plate and the front end plate and below the support tube. A pair of spaced idler rolls is rotatably mounted on respective second and third shafts between the rear end plate and the front end plate below the treater roll such that a flexible web is guided upwardly by the idler rolls and wound about the treater roll beneath the electrodes.

2449. Park, S.-J., and H.-Y. Lee, “Effect of atmospheric-pressure plasma on adhesion characteristics of polyimide film,” J. Colloid and Interface Science, 285, 267-272, (May 2005).

In this work, the effect of atmospheric-pressure plasma treatments on surface properties of polyimide film are investigated in terms of X-ray photoelectron spectroscopy (XPS), contact angles, and atomic force microscopy (AFM). The adhesion characteristics of the film are also studied in the peel strengths of polyimide/copper film. As experimental results, the polyimide surfaces treated by plasma lead to an increase of oxygen-containing functional groups or the polar component of the surface free energy, resulting in improving the adhesion characteristics of the polyimide/copper foil. Also, the roughness of the film surfaces, confirmed by AFM observation, is largely increased. These results can be explained by the fact that the atmospheric-pressure plasma treatment of polyimide surface yields several oxygen complexes in hydrophobic surfaces, which can play an important role in increasing the surface polarity, wettability, and the adhesion characteristics of the polyimide/copper system.

2504. Borcia, G., C.A. Anderson, and N.M.D. Brown, “Using a nitrogen dielectric barrier discharge for surface treatment,” Plasma Sources Science and Technology, 14, 259-267, (May 2005).

In this paper, continuing previous work, we report on the installation and the testing of an experimental dielectric barrier discharge (DBD) reactor run in a controlled atmospheric pressure gaseous environment other than air. Here, the effects of a N2-DBD treatment on the surface of a test polymer material (UHMW polyethylene) are examined, reported, discussed and compared to results obtained previously following air-DBD treatment. Surface analysis and characterization were performed using x-ray photoelectron spectroscopy, contact angle measurement and scanning electron microscopy before and following the DBD processing described. The discharge parameters used were correlated with the changes in the surface characteristics found following DBD treatments of various durations in a nitrogen atmosphere. The work focuses on the control of the gaseous environment supporting the discharge and on the possibility of overcoming the potentially dominant effect of reactive oxygen-related species, derived from any residual air present. The results obtained underline the very high reactivity of such species in the discharge, but are encouraging in respect of the possibility of the implantation or generation of functional groups other than oxygen-related ones at the surface of interest. The processing conditions concerned simulate 'real' continuous high speed processing, allowing the planning of further experiments, where various gaseous mixtures of the type X + N2 will be used for controlled surface functionalization.

1135. Packham, D.E., “Acid-base surface energy parameters,” in Handbook of Adhesion, 2nd Ed., D.E. Packham, ed., 7-9, John Wiley & Sons, Jul 2005.

1136. Padday, J.F., “Contact angle,” in Handbook of Adhesion, 2nd Ed., Packham, D.E., ed., 79-81, John Wiley & Sons, Jul 2005.

1137. Padday, J.F., “Contact angle measurement,” in Handbook of Adhesion, 2nd Ed., Packham, D.E., ed., 82-84, John Wiley & Sons, Jul 2005.

1138. Packham, D.E., “Contact angles and interfacial tension,” in Handbook of Adhesion, 2nd Ed., D.E. Packham, ed., 84-86, John Wiley & Sons, Jul 2005.

1139. Briggs, D., “Corona discharge treatment,” in Handbook of Adhesion, 2nd Ed., D.E. Packham, ed., 89-90, John Wiley & Sons, Jul 2005.

1140. Packham, D.E., “Critical surface tension,” in Handbook of Adhesion, 2nd Ed., D.E. Packham, ed., 94-96, John Wiley & Sons, Jul 2005.

1141. Allen, K.W., “Dispersion forces,” in Handbook of Adhesion, 2nd Ed., D.E. Packham, ed., 111-113, John Wiley & Sons, Jul 2005.

1142. Packham, D.E., “Good-Girifalco interaction parameter,” in Handbook of Adhesion, 2nd Ed., D.E. Packham, ed., 217-219, John Wiley & Sons, Jul 2005.

1143. Briggs, D., “Hydrogen bonding,” in Handbook of Adhesion, 2nd Ed., D.E. Packham, ed., 230-231, John Wiley & Sons, Jul 2005.

1144. Packham, D.E., “Lifshitz-van der Waals forces,” in Handbook of Adhesion, 2nd Ed., D.E. Packham, ed., 273-274, John Wiley & Sons, Jul 2005.

1145. Briggs, D., “Plasma treatment,” in Handbook of Adhesion, 2nd Ed., D.E. Packham, ed., 325-326, John Wiley & Sons, Jul 2005.

1146. Brewis, D.M., “Pre-treatment of polymers,” in Handbook of Adhesion, 2nd Ed., D.E. Packham, ed., 381-383, John Wiley & Sons, Jul 2005.

1147. Brewis, D.M., “Pre-treatments of polyolefins,” in Handbook of Adhesion, 2nd Ed., D.E. Packham, ed., 383-385, John Wiley & Sons, Jul 2005.

1148. Shanahan, M.E.R., “Surface characterization by contact angles - polymers,” in Handbook of Adhesion, 2nd Ed., D.E. Packham, ed., 511-514, John Wiley & Sons, Jul 2005.

1149. Packham, D.E., “Surface energy,” in Handbook of Adhesion, 2nd Ed., D.E. Packham, ed., 514-517, John Wiley & Sons, Jul 2005.

1150. Packham, D.E., “Surface energy components,” in Handbook of Adhesion, 2nd Ed., D.E. Packham, ed., 517-520, John Wiley & Sons, Jul 2005.

1151. Shanahan, M.E.R., “Wetting and spreading,” in Handbook of Adhesion, 2nd Ed., D.E. Packham, ed., 592-594, John Wiley & Sons, Jul 2005.

1152. Padday, J.F., “Wetting and work of adhesion,” in Handbook of Adhesion, 2nd Ed., D.E. Packham, ed., 594-597, John Wiley & Sons, Jul 2005.

1185. Bishop, C.A., “Troubleshooting adhesion - i.e., lack of adhesion,” http://www.vacuumcoatingblog.co.uk, Jul 2005.

1357. Alemskaya, O., V. Lelevkin, A. Tokarev, and V. Yudanov, “Synthesis of ozone in a surface barrier discharge with a plasma electrode,” High Energy Chemistry, 39, 263-267, (Jul 2005).

The synthesis of ozone from oxygen in a cylindrical ozonizer operating under surface discharge conditions with a plasma electrode was studied. The conditions of ozone synthesis were optimized. The dependence of ozone concentration and specific energy consumption on gas pressure in the plasma electrode and on distance between the coils of a corona electrode was determined. The results were compared with data obtained with the use of classical surface barrier discharge.

1430. Vandencasteele, N., H. Fairbrother, and F. Reniers, “Selected effect of the ions and the neutrals in the plasma treatment of PTFE surfaces: An OES-AFM-contact angle and XPS study,” Plasma Processes and Polymers, 2, 493-500, (Jul 2005).

Polytetrafluoroethylene (PTFE) surfaces were treated by oxygen and nitrogen species generated either in a remote (filtered) RF plasma or in an ion gun. In the first case, the majority of the species reaching the surface are neutral molecules, whereas in the second case, ions are the reactive agent. In this paper, we show that ions alone do not lead to a significant grafting of new functions on the PTFE surface. The XPS analysis of the treated surface show identical behaviour with oxygen and nitrogen ion treatment, and the evolution of the C1s peak shape suggest a progressive sputtering, leading to defluorination of the surface. The nitrogen plasma treatment lead to a subsequent grafting that is attributed mostly to the “excited neutrals”, but we suggest here that the ions could play a significant role in the activation process of the surface. The exposure of PTFE to an oxygen plasma lead to chemical etching of the surface, different from the physical sputtering induced by the ion treatment, that lead to a super-hydrophobic behavior of the surface attributed to an increase in the surface roughness.

1155. Kaplan, S.L, and P.W. Rose, “Plasma surface treatment,” in Coatings Technology Handbook, 3rd Ed., Tracton, A.A., ed., CRC Press, Aug 2005.

1256. Tajima, S., and K. Komvopoulos, “Surface modification of low-density polyethylene by inductively coupled argon plasma,” J. Physical Chemistry B, 109, 17623-17629, (Aug 2005).

The surface chemistry and nanotopography of low-density polyethylene (LDPE) were modified by downstream, inductively coupled, radio frequency (rf) Ar plasma without inducing surface damage. The extent of surface modification was controlled by the applied ion energy fluence, determined from the plasma ion density measured with a Langmuir probe. The treated LDPE surfaces were characterized by atomic force microscope (AFM) imaging, contact angle measurements, and X-ray photoelectron spectroscopy (XPS). Analysis of AFM surface images confirmed that topography changes occurred at the nanoscale and that surface damage was insignificant. Contact angle measurements demonstrated an enhancement of the surface hydrophilicity with the increase of the plasma power. XPS results showed surface chemistry changes involving the development of different carbon-oxygen functionalities that increased the surface hydrophilicity. Physical and chemical surface modification was achieved under conditions conducive to high-density inductively coupled rf plasma.

2279. Jones, V., “Development of poly(propylene) surface topography during corona treatment,” Plasma Processes and Polymers, 2, 547-553, (Aug 2005).

Atomic force microscopy (AFM), contact-angle measurements, and X-ray photoelectron spectroscopy (XPS or ESCA) were used to characterize biaxially oriented poly(propylene) (PP) films modified by exposure to a corona discharge. Surface analysis was performed on PP films modified at various corona energies to explore the changes in surface topography, wettability, and oxidation state resulting from the corona treatment. Even at low corona energies, water-soluble low-molecular-weight oxidized materials (LMWOM) are formed. These LMWOM products agglomerate into small topographical mounds that are visible in the AFM images. For the detection of LMWOM on corona-treated surfaces, AFM appears to be at least as sensitive as contact-angle measurements or ESCA. A major advantage of AFM relative to the other surface analytical techniques used to confirm the presence of the LMWOM is that no washing of the surface with water is required in conjunction with the AFM analysis.

1119. Long, J., and P. Chen, “Thermodynamics of contact angles on rough, heterogeneous surfaces,” in Molecular Interfacial Phenomena of Polymers and Biopolymers, Chen, P., ed., 119-158, Woodhead Publishing, Sep 2005.

This chapter presents a comprehensive study on the thermodynamics of contact angles on general rough, heterogeneous surfaces. Conventionally, contact is defined as the angle formed between a liquid-vapor interface and a liquid-solid interface at the solid-liquid-vapor three-phase contact line. On an ideal solid surface, which is smooth, homogeneous, isotropic, and non-deformable, the contact angle is expressed by the Young equation. The concept of liquid front simplified the thermodynamic treatments of contact angles on rough, heterogeneous surfaces and thus made it possible to model real surfaces. Receding contact angles are poorly reproducible for hydrophilic surfaces but for extremely hydrophobic surfaces, advancing contact angles might have a poor reproducibility. An impurity might cause poor reproducibility for receding contact angles if it is the component with the smallest intrinsic contact angle, but it can make the advancing contact angle. An impurity might not affect contact angle hysteresis if it is the component with an intermediate intrinsic contact angle.

1132. Grundke, K., “Surface-energetic properties of polymers in controlled architecture,” in Molecular Interfacial Phenomena of Polymers and Biopolymers, P. Chen, ed., 323-418, Woodhead Publishing, Sep 2005.

There is currently an interest in techniques to control surface and interfacial properties of polymeric materials, such as wettability, adhesion, biocompatibility, friction, and wear, for different applications and technologies and for the design of novel materials. The desired surface properties range from complete release toward all contacting gaseous, liquid or solid substances to irreversible covalent bonding to other substrates of interest. The macroscopic interfacial phenomena describing these properties are wetting, adhesion, and adsorption. They all share a common basis; they are dependent upon the intermolecular and surface forces and, on the molecular level, upon the chemical and physical details of the molecular structure of the surfaces, especially upon the availability of particular functional groups at the surface. This chapter focuses on the strategies to estimate the surface energetic from wetting and surface tension measurements. The fact that the surface chemistry of polymers might differ substantially from the average bulk chemistry is also caused by the structural features of macromolecules. Therefore, it has become a powerful tool to control the surface energetic of polymers by their chemical bulk structures.

1134. Bishop, C.A., “Ask AIMCAL: We are having a problem laminating polyester and polypropylene (PP),” AIMCAL News, 25, (Sep 2005).

1175. Derr, L., and F. Gum, “Printing on film: A pressroom guide to OPP for packaging,” Flexo, 30, 53-56, (Sep 2005).

 

<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | Next-->