Accudynetest logo

Products available online direct from the manufacturer

ACCU DYNE TEST ™ Bibliography

Provided as an information service by Diversified Enterprises.

3053 results returned
showing result page 54 of 77, ordered by
 

880. Rowlinson, J.S., Cohesion: A Scientific History of Intermolecular Forces, Cambridge University Press, Nov 2002.

553. Ruckenstein, E., and S.V. Gourisankar, “Environmentally induced restructuring of polymer surfaces and its influence on their wetting characteristics in an aqueous environment,” J. Colloid and Interface Science, 107, 488-502, (1985).

In the conventional methods of estimating the wetting characteristics of solids from contact angle experiments, the surface energetic properties of the solid are assumed to be identical in the environments of both the surrounding medium and probe fluids. While this assumption is suitable for solids which possess rigid surface structures (such as glasses, ceramics, and metals for example), it is generally inapplicable to polymeric solids, since the surfaces of the latter are relatively mobile so as to be able to adopt considerably different configurations in different environments. Based on a recognition of this feature of polymeric surfaces, a sequence of contact angle experiments is suggested to estimate: (a) the instantaneous as well as equilibrium surface energetic properties of a polymeric solid in an aqueous environment and (b) the time required for the polymeric surface to attain its equilibrium wetting characteristics in the aqueous environment. In order to illustrate the applicability of the suggested contact angle procedure, it is necessary to prepare model polymeric surfaces, which are smooth in surface texture, nonporous, and also chemically homogeneous. Such model surfaces were prepared in this study, by radio frequency sputter deposition of thin solid films of oxidized fluorocarbon compounds (from a Teflon FEP target) onto the smooth surfaces of highly polished, single crystal silicon substrates. The estimation of the wetting characteristics of the sputtered polymer films in an aqueous environment was then carried out by the suggested contact angle procedure. The results of the contact angle experiments indicate that the solid-water interfacial free energy of the sputtered polymer film which was initially equilibrated in an octane environment, decreases from an instantaneous value of 50.88 dyn/cm to an equilibrium value of 26.59 dyn/cm, over a duration of about 24 h. Such a change in the solid-water interfacial free energy of these model polymeric surfaces can arise due to a time-dependent reorientation of the buried polar groups of the solid from its bulk to its surface, when it is placed in contact with a strongly polar liquid like water. This interpretation was found to be consistent with the results of ESCA characterization, which indicated that the outer surface layers of the sputtered polymeric specimen contained a fair amount of the polar oxygen atoms that are capable of reorienting themselves from either the interior of the solid to its surface or vice versa, depending on their surrounding environment.

2711. Rudawsk, A., “Surface free energy and 7075 aluminum bonded joint strength following degreasing only and without any prior treatment,” J. Adhesion Science and Technology, 26, 1233-1247, (2012).

Adhesion is a surface phenomenon occurring in many processes, e.g., bonding, painting or varnishing. Knowing the adhesion properties is critical for evaluating the usability or behaviour of materials during these processes. Good adhesion properties favour the processes of bonding, resulting in high strength of adhesive joints. Adhesive bonded joints are used in many industries, and the subject of this study was 7075 aluminium alloy sheet bonded joints as typically used in the aviation or construction industry. Surface free energy (SFE) can be used to determine the adhesion properties of the materials. The SFE of the tested sheets was determined with the Owens–Wendt method, which consists in determining the dispersion and polar components of SFE. The purpose of this work was to correlate the bonded joint strength of selected aluminium alloy sheets to the surface free energy of the sheets that had been subjected to degreasing only and no other prior treatment was used. Single-lap bonded joints of 7075 aluminium alloy sheets were tested. Higher joint strength was measured for the thinner sheets, while the lowest strength was measured for the thickest sheets. This suggests that the thickness of the joined parts is an important factor in the strength of bonded joints. The comparison of adhesion properties to the strength of adhesive joints of tested materials shows that there is no direct relation between good adhesion properties (i.e., high SFE) and joint strength. As for degreasing, the highest joint strength was observed for aluminium alloy sheets with the lowest SFE; the sheets which were not degreased gave the highest SFE and highest joint strength.

2625. Rudawska, A., and J. Kuczmaszewski, “Surface free energy of zinc coating after finishing treatment,” Materials Science - Poland, 24, (2006).

Protective properties of zinc coating increase with an additional coating such as: chromate, phosphate, paint and polymer coating. Besides, additional treatment of zinc coating serves decorative purposes as well. The paper presents the influence of additional coating of zinc coating on their adhesive properties which are especially helpful in processes where adhesion plays an essential role. These processes include among others: gluing, painting or varnishing. Adhesive properties are characterized by the value of surface free energy.

2052. Ruddy, A.C., G.M. McNally, G. Nersisyan, W.G. Graham, and W.R. Murphy, “The effect of atmospheric glow discharge (APGD) treatment on polyetherimide, polybutyleneterephthalate, and polyamides,” J. Plastic Film and Sheeting, 22, 103-119, (Apr 2006).

Polyamide 6, polyamide 12, polybutyleneterephthalate, and polyetherimide films are plasma treated in an APGD unit using various applied voltages, gas flow rates, frequencies, and dwell times. The results show changes in the surface chemistry (FTIR); the degree of change in dynamic contact angle is found to be dependent on the polymer type, dwell time, and electrical characteristics of the plasma.

2257. Ruiz-Cabello, F.J.M., M.A. Rodriguez-Valverde, and M.A. Cabrerizo-Vilchez, “Contact angle hysteresis on polymer surfaces: An experimental study,” J. Adhesion Science and Technology, 25, 2039-2049, (2011).

In order to characterize a solid surface, the commonly used approach is to measure the advancing and receding contact angles, i.e., the contact angle hysteresis. However, often an estimate of the average wettability of the solid–liquid system is required, which involves both the dry and wetted states of the surface. In this work, we measured advancing and receding contact angles on six polymer surfaces (polystyrene, poly(ethylene terephthalate), poly(methyl methacrylate), polycarbonate, unplasticized poly(vinyl chloride), and poly(tetrafluoroethylene)) with water, ethylene glycol and formamide using the sessile drop and captive bubble methods. We observed a general disagreement between these two methods in the advancing and receding contact angles values and the average contact angle determined separately by each method, although the contact angle hysteresis range mostly agreed. Surface mobility, swelling or liquid penetration might explain this behaviour. However, we found that the 'cross' averages of the advancing and receding angles coincided. This finding suggests that the cross-averaged angle might be a meaningful contact angle for polymer–liquid systems. Hence, we recommend using both the sessile drop and captive bubble methods.

2264. Ruiz-Cabello, F.J.M., M.A. Rodriguez-Valverde, and M.A. Cabrerizo-Vilchez, “Additional comments on 'An essay on contact angle measurements' by M. Strobel and C. Lyons,” Plasma Processes and Polymers, 8, 363-366, (May 2011).

After the impact of the great review of M. Strobel and C. S. Lyons on contact angle measurements, we discuss some claims of the authors. The Wilhelmy method is not generally “the best technique for measuring the contact angle hysteresis” as the authors claimed. Otherwise, we think that, even though equilibrium contact angle is an “unattainable” angle, the most-stable contact angle obtained from the system relaxation is experimentally accessible. The most-stable contact angle is energetically significant for evaluating quantitatively the surface energy value of rough, chemically homogeneous surfaces from the Wenzel equation, and the average surface energy of smooth, chemically heterogeneous surfaces from the Cassie equation. The most-stable contact angle, the advancing contact angle and the receding contact angles enable the thermodynamic description of the range of contact angle hysteresis and the distribution of metastable system configurations.

2473. Rulison, C., “So you want to measure surface energy? A tutorial designed to provide basic understanding of the concept of solid surface energy, and its many complications,” Kruss USA,

2485. Rulison, C., “Adhesion energy and interfacial tension - two related coating/substrate interfacial properties: Which is more important for your application, and why?,” http://www.kruss.de.en/newsletter/newsletter-archives.2003.issue-01, Jan 2003.

2621. Rulison, C., “Effect of temperature on the surface energy of solids - sometimes it does matter,” Kruss Application Note AN250e, Dec 2005.

3017. Rulison, C., “Two-component surface energy characterization as a predictor of wettabiltiy and dispersability,” Kruss Application Report AR213e, Jan 2000.

2373. Runck, W.A., “Corona discharge treatment roll,” U.S. Patent 4402888, Sep 1983.

The present invention relates to improvements in treatment rolls for the corona discharge treatment of polymeric films whereby the same are rendered receptive to printing inks and the like. More particularly, the invention is directed to a treatment roll and method for use as an electrode in a corona discharge device, the roll being comprised of a metal substrate having a porous ceramic coating, the interstices in said coating being filled with silicone polymer, the roll evincing a high resistance to wear and electrical breakdown, whereby higher volumes of material may be processed.

2000. Ryley, D.J., and B.H. Khoshaim, “A new method of determining the contact angle made by a sessile drop upon a horizontal surface (sessile drop contact angle),” J. Colloid and Interface Science, 59, 243-251, (Apr 1977).

The contact angle may be measured by magnifying the projected image of a sessile drop, assuming the profile is elliptical, and finding the Cartesian coordinates of selected points on the profile. By selecting groups of three such points the mean equation to the outline can be determined and thus the tangent at the observed point of contact. The method was tested using water drops on various steel surfaces and using mercury on glass. Results showed generally satisfactory agreement with those obtained using the tilting plate method and also with those obtained by other investigators who have employed analytical methods to define the drop shape. If the sessile drop shape is assumed to be a part-oblate spheroid, a minimum free-energy analysis illuminates several experimentally observed features of its shape.

1117. Ryu, D.Y., K. Shin, E. Drockenmuller, C.J. Hawker, and T.P. Russell, “A generalized approach to the modification of solid surfaces,” Science, 308, 236-238, (Apr 2005).

Interfacial interactions underpin phenomena ranging from adhesion to surface wetting. Here, we describe a simple, rapid, and robust approach to modifying solid surfaces, based on an ultrathin cross-linkable film of a random copolymer, which does not rely on specific surface chemistries. Specifically, thin films of benzocyclobutene-functionalized random copolymers of styrene and methyl methacrylate were spin coated or transferred, then thermally cross-linked on a wide variety of metal, metal oxide, semiconductor, and polymeric surfaces, producing a coating with a controlled thickness and well-defined surface energy. The process described can be easily implemented and adapted to other systems.

1369. Sabreen, S., “Surface treatments for electronic components - solutions for adhesive bonding problems,” Presented at NEPCON West, 1993.

1178. Sabreen, S.R., “Question: Surface wetting,” Plastics Decorating, 46, (Apr 2006).

1179. Sabreen, S.R., “Question: Corona discharge and flame surface pretreatment methods,” Plastics Decorating, 46, (Apr 2006).

1532. Sabreen, S.R., “Question: flame plasma surface treatment,” Plastics Decorating, 45-46, (Jan 2007).

1556. Sabreen, S.R., “Technology developments for digital applications,” Plastics Decorating, 20-25, (Apr 2007).

2158. Sabreen, S.R., “Surface wetting procedure using dyne solutions,” http://www.sabreen.com/dyne_solutions.htm,

2160. Sabreen, S.R., “Basics of surface wetting and pretreatment methods,” http://www.sabreen.com/surface_wetting.htm,

2220. Sabreen, S.R., “Cold gas plasma surface modification: Optimize plastics bonding adhesion,” Plastics Decorating, 6-10, (Jan 2010).

2222. Sabreen, S.R., “The science of solving plastics adhesion problems: Contact angles, surface wetting, chemical activation,” Plastics Decorating, 26-28, (Apr 2010).

2233. Sabreen, S.R., “Solving the problem of plastics adhesion,” Plastics Engineering, 67, 6-8, (Apr 2011).

2435. Sabreen, S.R., “Plastics surface energy wetting test methods,” http://www.plasticsdecorating.com/ENEWS/ENews.asp?/item=surfaceenergywetting, Mar 2012.

2441. Sabreen, S.R., “Fluorooxidation: A breakthrough surface pretreatment,” Plastics Decorating, 14-16, (Apr 2012).

2463. Sabreen, S.R., “Fluorooxidation surface pretreatment,” http://plasticsdecorating.com/e-news/stories/061313/fluorooxidation, Jun 2013.

2464. Sabreen, S.R., “Cold gas plasma treatment - best practices (Best of the Plastics Decorating blog),” Plastics Decorating, 19, (Apr 2013).

2465. Sabreen, S.R., “The fundamentals of flame treatment,” http://plasticsdecorating.com/e-news/stories/051613/sabreen.shtml, May 2013.

2468. Sabreen, S.R., “Innovative inkjet technologies for plastic products,” Plastics Decorating, 14-21, (Jul 2013).

2471. Sabreen, S.R., “Plastics surface energy wetting test methods,” http://www.plasticsdecorating.com/?p=414#more-414, Jul 2013.

2452. Sabreen, S.R., “Plastics surface energy wetting test methods,” Plastics Decorating, 23-24, (Jul 2012).

2461. Sabreen, S.R., “Q & A: Process solutions for adhesion bonding of nylon,” http://www.plasticsdecorating.com/ENEWS/ENews.asp?item=101812qa-sabreen, Oct 2012.

2466. Sabreen, S.R., “How coloring plastic affects secondary processes,” http://plasticsdecorating.com/e-news/stories/041113/sabreen.shtml, Apr 2013.

2470. Sabreen, S.R., “Adhesion bonding of polyphenylene sulfide,” http://plasticsdecorating.com/e-news/stories/081513/sabreen.shtml, Aug 2013.

2476. Sabreen, S.R., “Gas-phase surface pretreatment for plastics adhesion,” http://plasticsdecorating.com/e-news/stories/091913/sabreen.shtml, Sep 2013.

2585. Sabreen, S.R., “Methods for adhesion bonding of polyphenylene sulfide,” Plastics Decorating, 32-38, (Oct 2013).

2590. Sabreen, S.R., “Surface wetting & pretreatment methods,” http://www.sabreen.com/surface_wetting_pretreatment_methods.pdf, 2013.

2591. Sabreen, S.R., “Gas-phase surface pretreatments for plastics adhesion,” Plastics Decorating, 31-34, (Apr 2014).

2594. Sabreen, S.R., “Innovating inkjet technologies for plastic products,” http://www.plasticsdecorating.com/e-news/stories/121213/sabreen.shtml, Dec 2013.

 

<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | Next-->