ACCU DYNE TEST ™ Bibliography
Provided as an information service by Diversified Enterprises.
showing result page 40 of 77, ordered by
1815. Mangipudi, V.S., M. Tirrell, and A.V. Pocius, “Direct measurement of molecular level adhesion between poly(ethylene terephthalate) and polyethylene films: Determination of surface and interfacial energies,” J. Adhesion Science and Technology, 8, 1251-1270, (1994) (also in Fundamentals of Adhesion and Interfaces, D.S. Rimai, L.P. DeMejo, and K.L. Mittal, eds., p. 205-224, VSP, Dec 1995).
The strength of an adhesive bond depends on the thermodynamic work of adhesion, among other properties. In this paper, we report the direct measurement of the thermodynamic work of cohesion and adhesion between poly(ethylene terephthalate) (PET) and polyethylene (PE) films. The pull-off force between polymer surfaces was measured using the surface forces apparatus (SFA). Thermodynamic work of adhesion was determined from pull-off force measurements using the theory of contact mechanics developed by Johnson, Kendall, and Roberts (JKR theory). The values of the surface energies of PET and PE, and the interfacial energy between PET and PE were obtained from these measurements. The dependence of the measured values of the work of adhesion on the rate of separation, time in contact, and other variables that could reflect an irreversible contribution to the measured adhesion was found to be negligible. The critical surface tensions of PET and PE were determined from contact angle measurements. The critical surface tension of wetting depends on the characteristics of the probe liquids. The surface energy of PET determined by the direct force measurements is higher than the critical surface tension of wetting. These values are 61.2 mJ/m2 and about 43 mJ/m , respectively. However, in the case of PE the surface energy determined using the SFA and the critical surface tension of wetting are about the same, 33 mJ/m2. The interfacial energy between PET and PE, obtained from direct measurements, is about 17.1 mJ/m2.
898. Mangipudi, V.S., and A. Falsifi, “Direct estimation of the adhesion of solid polymers,” in Adhesion Science and Engineering: Vol. 1 - The Mechanics of Adhesion; Vol. 2 - Surfaces, Chemistry and Applications, Dillard, D.A., and A.V. Pocius, eds., 75-138(V2), Elsevier, Oct 2002.
2651. Mania, D.M., “Is there a correlation between contact angle and stain repellency?,” Coatings World, 21, 99-105, (Jul 2016).
2720. Manko, D., A. Zdziennicka, K. Szymczyk, and B. Janczuk, “Wettability of polytetrafluoroethylene and polymethyl methacrylate by aqueous solutions of TX-100 and TX-165 mixture with propanol,” J. Adhesion Science and Technology, 29, 1081-1095, (2015).
The measurements of the contact angle of the aqueous solutions of TX-100 and TX-165 mixture with propanol on polytetrafluoroethylene (PTFE) and polymethyl methacrylate (PMMA) were carried out. On the basis of the obtained results, the dependence between the cosine of contact angle and surface tension as well as between the adhesion and surface tension of the solutions in the light of the work of adhesion of the solutions to the PTFE and PMMA surface was discussed. The dependence between the adhesion and surface tension for PMMA was correlated to the surface concentration of propanol as well as TX-100 and TX-165 mixture concentration determined from the Frumkin equation at the PMMA-air, PMMA-solution and solution–air interfaces. For this purpose, the surface tension of PMMA covered by a surface active agent film was determined using the Neumann et al. equation and next the PMMA–solution interface tension was evaluated from the Young equation. The values of the surface tension of PMMA covered by propanol and surfactants mixture layer were applied to describe the changes of the adhesion work of solutions to PMMA surface as a function of propanol and surfactants mixture concentration. The adhesion work of the aqueous solutions of TX-100 and TX-165 mixture with propanol to the PTFE and PMMA surfaces was discussed in the light of the adhesion work of particular components of the solutions. On the basis of the results obtained from the contact angle measurements, the standard Gibbs free energy of adsorption of particular components of solution was also considered.
2354. Mantell, R.M., “Method of treating synthetic resinous material to increase the wettability thereof,” U.S. Patent 3309299, Mar 1967.
The present invention relates generally to an improved method of treating surfaces of materials, such as synthetic resinous materials, to render these surfaces more adherent to substances such as printing inks, paints, lacquers and glues. More particularly, it relates to a process which comprises treating these materials with monatomic gases.
2338. Mantell, R.M., and W.L. Ormand, “Activation of plastic surfaces in a plasmajet,” Industrial & Engineering Chemistry, 3, 300-303, (Dec 1964).
A low-temperature, nonequilibrium plasmajet process for activation of polymer surfaces has been developed. A stream of oxygen is partially dissociated by a glow discharge, expanded to high velocity through an orifice into a region of lower pressure, and impinged on the desired surface. Parameters measured before and after treatment of a variety of polymers include weight, surface-bonding characteristics, and wettability. The weight loss of the polymer increases with exposure time, discharge power, and proximity to the atom source; its relation to the changes in surface properties is discussed.
523. Mapleston, P., “Plasma technology progress improves options in surface treatment,” Modern Plastics Intl., 20, 74-79, (Oct 1990).
1574. Marcandalli, B., and C. Riccardi, “Plasma treatments of fibers and textiles,” in Plasma Technologies for Textiles, R. Shishoo, ed., 282-315, Woodhead Publishing, Mar 2007.
647. Marchant, R.E., C.J. Chou, and C. Khoo, “Effect of nitrogen RF plasma on the properties of polypropylene,” in Plasma Polymerization and Plasma Treatment of Polymers, Yasuda, H.K., ed., 126-138, John Wiley & Sons, 1988.
2889. Mark, G.L., and D.A. Lee, “The determination of contact angles from measurements of the dimensions of small bubbles and drops II. The sessile drop method for obtuse angles,” J. Physical Chemistry, 40, 169-176, (1936).
It has been suggested in a previous communication (3) that widely variant surface energies may exist at closely adjoining points on a surface. Well-substantiated theory as to the surface structure of solid catalytic materials is in accord with thisview (7). The “active patches” on the catalytic surfaces are an extreme example of irregularity in the surface energy, but it seems reasonable to suppose that such irregularities may exist to a lesser degree in nearly all ordinary surfaces. Photographic evidence in support of this proposition appears in the work of Wark and Cox (9), who found that the same air bubble under a mineral surface wet with water might have an angle of contact on the right side different from that on the left.
Instead of measuring the contact angle directly, it may be calculated from the dimensions of the drop. The angle so obtained may be regarded as the integral of the sum of all the various contact angles existing along the circumference of the drop. Thus each determination yields an average result not unduly influenced by irregularities at a given point on the surface. For precise determinations the method should have an especial advantage over the usual procedure of direct measurement, because the error in personal judgment involved in drawing the tangent to the curved drop surface at the point of contact is eliminated. This error becomes increasingly important as the contact angle approaches 180, while the dimensions of the drop may be measured with the same degree of accuracy as before.
2155. Mark, J.E., ed., Polymer Data Handbook, 2nd Ed., Oxford Univ. Press, Apr 2009.
229. Markgraf, D.A., “Determining the size of a corona treating system,” TAPPI J., 72, 173-178, (Sep 1989).
230. Markgraf, D.A., “Understanding causes can deter backside treatment,” Paper Film & Foil Converter, 66, 145-146, (Sep 1992).
231. Markgraf, D.A., “Corona treatment: an overview,” in 1994 Polymers, Laminations and Coatings Conference Proceedings, 159-188, TAPPI Press, Sep 1994.
With the advent of readily available nonpaper substrates (plastics and foils) in the mid-to-late 1950’s, the requirement for a reliable production speed surface treatment process became apparent. Several different technologies have been tried, but one, corona treatment, has become, by far, the primary surface treatment technology used across the Extrusion and Converting Industries. We will touch on these various technologies, technically describe the need for surface treatment and how it is measured, trace the development of corona treatment as the leading surface treatment method, and detail the current state-of-the-art in equipment, control parameters and applications.
232. Markgraf, D.A., “Corona treating electrodes: effect on treatment level and efficiency,” in 1995 Polymers, Laminations and Coatings Conference Proceedings, 159-166, TAPPI Press, Aug 1995.
524. Markgraf, D.A., “Ozone decomposition in corona treatment,” in 1985 Polymers, Laminations and Coatings Conference Proceedings, 227+, TAPPI Press, Aug 1985.
525. Markgraf, D.A., “Treatment required for printing with water-based inks,” in 1987 Polymers, Laminations and Coatings Conference Proceedings, 333-336, TAPPI Press, Aug 1987.
526. Markgraf, D.A., “Corona treatment and water-borne technology: Implications for converting polyolefin substrates,” American Ink Maker, 65, 26-62, (1987).
527. Markgraf, D.A., “Sizing: the critical element for effective corona treating,” in 1989 Coextrusion Seminar Proceedings, 17+, TAPPI Press, 1989.
617. Markgraf, D.A., “Troubleshooting corona treatment equipment in the converting industry,” in 2002 Troubleshooting Short Course for Extrusion Coating & Flexible Packaging Notes, 109-118, TAPPI Press, Jun 2002 (also in 2002 PLACE Conference Proceedings, TAPPI Press, Sep 2002).
729. Markgraf, D.A., “Corona treatment enhanced adhesion for extrusion coating,” in Extrusion Coating Manual, 4th Ed., Bezigian, T., ed., 65-74, TAPPI Press, Feb 1999.
747. Markgraf, D.A., “Surface treatment,” in Film Extrusion Manual: Process, Materials, Properties, 2nd Ed., Butler, T.I., 287-311, TAPPI Press, Feb 2005.
928. Markgraf, D.A., “Practical aspects of determining the intensity of corona treatment,” TAPPI J., 68, (Feb 1985).
929. Markgraf, D.A., “Statistical quality control (SQC) applied to corona treating,” Flexo, 13, (May 1988).
942. Markgraf, D.A., “Atmospheric plasma - the new functional treatment for extrusion coating and lamination processes,” in 2003 European PLACE Conference Proceedings, TAPPI Press, 2003.
955. Markgraf, D.A., “Corona treater station design & construction: Meeting the blown film challenge,” in 1996 Polymers, Laminations and Coatings Conference Proceedings, TAPPI Press, 1996.
1053. Markgraf, D.A., “What technology should I use to treat my film?,” in 2003 PLACE Conference and the Global Hot Melt Symposium, TAPPI Press, Sep 2003 (also in AIMCAL 2003 Fall Technical Conference, AIMCAL, Oct 2003).
1104. Markgraf, D.A., “Analysis of new flame treatment technology for surface modification and adhesion promotion,” in 2004 PLACE Conference Proceedings, TAPPI Press, Sep 2004.
1107. Markgraf, D.A., “The treatment of thinner substrates,” Presented at 2004 AIMCAL Fall Technical Conference, Oct 2004.
1394. Markgraf, D.A., “Corona treatment: an overview,” in 1986 Coextrusion Conference Proceedings, 85, TAPPI Press, 1986.
1399. Markgraf, D.A., “Evolution of corona treating electrodes,” in 1983 Paper Synthetics Conference Proceedings, 255, TAPPI Press, 1983.
1405. Markgraf, D.A., “Physical and surface chemistry of corona discharge...,” in 1985 Polymers, Laminations and Coatings Conference Proceedings, 107+, TAPPI Press, Aug 1985.
1406. Markgraf, D.A., “Practical aspects of determining level of corona treatment,” in 1984 Polymers, Laminations and Coatings Conference Proceedings, 507+, TAPPI Press, Aug 1984 (also in 1985 Film Extrusion Conference Proceedings, p. 65+, TAPPI Press, 1985).
1714. Markgraf, D.A., Surface Treatment of Plastics: Technology and Applications, Technomic, 1996.
2665. Markgraf, D.A., “Corona treater station design & construction: Meeting the converting challenge,” Enercon Industries,
2763. Markgraf, D.A., “Corona treatment: An adhesion promoter for water-based & UV-cured printing,” in 1996 New Printing Technologies Symposium Proceedings, TAPPI Press, 1996.
528. Markgraf, D.A., and R. Edwards, “Corona treating solves sealing problems: eliminating the elusive hydrocarbon,” in 1990 Polymers, Laminations and Coatings Conference Proceedings, 915-925, TAPPI Press, Aug 1990.
1392. Markgraf, M.P., “Corona treatment: An adhesion promoter for UV/EB converting,” RadTech Report, 7, (Sep 1993).
702. Marmur, A., “Theory and measurement of contact angles,” Presented at First International Congress on Adhesion Science and Technology, Oct 1995.
2894. Marmur, A., “Soft contact: measurement and interpretation of contact angles,” Soft Matter, 2, 12-17, (2006).
The measurement and interpretation of contact angles deceptively appear to be simple. This paper attempts to summarize the pitfalls in the field, and how to avoid them. First, the fundamental underlying theory that is necessary in order to properly measure and interpret contact angles is discussed, emphasizing recent developments. Then, the practical implications of these theoretical aspects are presented. In addition, the discussion highlights the missing pieces of the picture that need to be completed through future research.
<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | Next-->