Accudynetest logo

Products available online direct from the manufacturer

ACCU DYNE TEST ™ Bibliography

Provided as an information service by Diversified Enterprises.

3053 results returned
showing result page 44 of 77, ordered by
 

2525. Morsy, F.A., S.Y. Elsayad, A. Bakry, and M.A. Eid, “Surface properties and printability of polypropylene film treated by an air dielectric barrier discharge plasma,” Surface Coatings International, Part B: Coatings Transactions, 89, 49-55, (Mar 2006).

The effect of air dielectric barrier discharge plasma treatment on the chemical structure and morphology of polypropylene (PP)film was studied using UV-VIS (ultraviolet-visible),FT-IR,(Fourier transform infrared),SEM (scanning electron microscopy)and AFM (atomic force microscopy).Polypropylene samples were printed using solvent-based gravure ink.An evaluation of the print quality criteria of the treated PP films included measurement of print density and print gloss.SEM investigated the ink laydown on the modified PP film.The results showed that after a few seconds of plasma treatment,both the surface energy and the surface roughness of the treated PP film increased.There was an increase in the absorbance at the almost-visible range,and C=C and C=O bands were found after the air discharge plasma treatment.A short plasma treatment of 15 seconds was found to bring about a dramatic increase in the print density readings,but a decrease in print gloss.The time of the air discharge plasma treatment was found to have no effect on the print density or print gloss at a high ink film thickness.The results showed that air dielectric barrier discharge plasma treatment,for a few seconds,is effective in printing and is economical for industrial use (this will be studied in detail in future work).

1239. Morvov, M., “DC corona discharges in air and CO-air mixtures for various electrode materials,” J. Physics D: Applied Physics, 31, 1865-1874, (1998).

Positive and negative dc corona discharges in CO-air and -air mixtures were applied. Natural humid air was used. The step by step development with time of the formation of gas products after the action of the corona discharge was measured in situ. The discharge tube was situated in an IR gas cell. The IR absorption spectra were scanned from the area of the inter-electrode distance in successive time steps of the action of the discharge (about 1 min). Measurements were performed for three combinations of electrode materials, namely Mo-stainless steel, Mo-brass and Cu-brass. Reflection IR absorption spectra from the surfaces of the electrodes used were scanned after the action of the discharge. The influence of the electrode material on the development with time of the reaction products was observed. Polymer-metal complexes with possible catalytic activity are formed on the surfaces of electrodes. From measurements it resulted that the discharge processes consist of simultaneously acting volume processes of plasmochemical nature (probably initiated by electrons) and electrocatalytic surface processes on electrodes (probably initiated by photons).

1240. Morvova, M., “The influence of water vapour and temperature on depletion of carbon monoxide in d.c. corona discharge,” Czechoslovak J. Physics, 49, 1703-1719, (Dec 1999).

The plasmochemical and/or electrocatalytical reactions of carbon monoxide with water vapour were studied. Dc corona discharge of both polarities at room temperature and temperatures enhanced up to 70°C was applied at pressures close to atmospheric.

The reaction products were analysed by IR absorption spectrometry. The main products in the gas phase were CO2 and CH4. The reactions are influenced by the formation of a catalytically active surface layer on electrodes. The composition of this layer depends on the polarity of electrode.

248. Moshonov, A., and Y. Avny, “The use of acetylene glow discharge for improving adhesive bonding of polymeric films,” J. Applied Polymer Science, 25, 771-781, (1980).

Coating of polyethylene (PE), poly(vinyl fluoride) (PVF), poly(tetrafluoroethylene) (PTFE), and poly(vinyl chloride) (PVC) films with flow discharge-polymerized acetylene was investigated. The influence of glow discharge experimental conditions on the nature of the coated layer, the films' wettability, surface roughness, and adhesive joint strength was determined. It was found that coating of these films with plasma-polymerized acetylene led to the formation of a rough, crosslinked, irremovable layer with an improved wettability. The presence of the plasma-polymerized acetylene on the film surface lead to a large improvement in the adhesive joint strength of these films with epoxy adhesive. Best results were obtained with films coated at a low acetylene flow rate. Increase in glow discharge power and treatment time lead to a further improvement.

1628. Mount, E.M., “Why is treatment such a poor indicator of surface quality?,” http://www.convertingmagazine.com/blog, Jan 2008.

249. Mount, E.M. III, “Plasma pretreatment for metalizing packaging film,” Converting, 19, 124-131, (Mar 2001).

684. Mount, E.M. III, “Aluminum adhesion of metallized films in lamination,” Converting, 21, 66-72, (Mar 2003).

1068. Mount, E.M. III, “Shelf life of metalized polyester film for packaging applications,” AIMCAL News, 26, (Apr 2004).

1108. Mount, E.M. III, “Review of metallized film adhesion testing: Test methods and interpretation of results,” Presented at 2004 AIMCAL Fall Technical Conference, Oct 2004.

1499. Mount, E.M. III, “Delamination problems,” http://www.vacuumcoatingblog.co.uk, Jun 2006.

1629. Mount, E.M. III, “Measuring treatment, part 1,” http://www.convertingmagazine.com/blog, Jan 2008.

1630. Mount, E.M. III, “Measuring treatment, part 2,” http://www.convertingmagazine.com/blog, Jan 2008.

1631. Mount, E.M. III, “Measuring treatment, part 3,” http://www.convertingmagazine.com/blog, Jan 2008.

1690. Mount, E.M. III, “Substrate secrets: The best film optics for a particular application can be attained via rigid control of surface chemistry and internal and external light-scattering,” Converting, 26, 46-50, (Feb 2008).

2129. Mount, E.M. III, “Humidity's effect on treater rolls and film treatment,” http://www.empiretreaterrolls.com, 2007.

2131. Mount, E.M. III, “A study of energy savings in corona treatment of packaging films,” http://www.empiretreaterrolls.com, 2007.

2234. Mount, E.M. III, “PET film coatings for maintaining the surface energy of the films,” http://www.convertingquarterly.com/blogs/substrate-secrets/id/2661/, Apr 2011.

2237. Mount, E.M. III, “Substrate secrets: When to blame the corona treater,” Converting Quarterly, 1, 12, (Aug 2011).

2239. Mount, E.M. III, “Substrate secrets: Delamination of adhesive lamination after several weeks,” http://www.convertingquarterly.com/blogs/substrate-secrets/id/2995/, Jul 2011.

2262. Mount, E.M. III, “Substrate secrets: Plasma treatment and treatment retention,” http://www.convertingquarterly.com/blogs/substrate-secrets/id/3444/, Oct 2011.

2296. Mount, E.M. III, “Substrate secrets: Priming metallized films,” http://www.convertingquarterly.com/blogs/substrate-secrets/id/3462/, Nov 2011.

2430. Mount, E.M. III, “Substrate secrets: Surface treatment and heat sealing OPP,” http://www.convertingquarterly.com/blogs/substrate-secrets/id/3081/, Jan 2012.

2432. Mount, E.M. III, “Substrate secrets: We are seeing differences in tape testing and lamination adhesion behavior,” http://www.convertingquarterly.com/blogs/substrate-secrets/id/3877/, Feb 2012.

2436. Mount, E.M. III, “Substrate secrets: Maintaining the surface energy of PET films,” http://www.convertingquarterly.com/blogs/substrate-secrets/id/4269/, Jun 2012.

2442. Mount, E.M. III, “Substrate secrets: Why are PP and PE not compatible?,” http://www.convertingquarterly.com/blogs/substrate-secrets/id/4266/, May 2012.

2443. Mount, E.M. III, “Substrate secrets: Solubility parameters patent reference,” http://www.convertingquarterly.com/blogs/substrate-secrets/id/4357/, Jun 2012.

2472. Mount, E.M. III, “Substrate secrets: Metallized films - aluminum layer contamination in wound rolls,” http://www.convertingquarterly.com/blogs/substrate-secrets/id/4623/, Aug 2012.

2474. Mount, E.M. III, “Substrate secrets: Surface testing of a delamination,” http://www.convertingquarterly.com/blogs/substrate-secrets/id/6008/, Sep 2013.

2598. Mount, E.M. III, “Help for lamination bonding,” http://www.convertingquarterly.com/blogs/substrate-secrets/id/7084/, Jul 2014.

2600. Mount, E.M. III, “Substrate secrets: How to recognize a corona-treated or plain PET film surface after metallization,” http://www.convertingquarterly.com/blogs/substrate-secrets/id/6965/, Jul 2014.

2601. Mount, E.M. III, “Substrate secrets: Extrusion-coating of woven HDPE cloth,” http://www.convertingquarterly.com/blogs/substrate-secrets/id/7219/, Sep 2014.

2603. Mount, E.M. III, “Substrate secrets: Treatment decay in metallized films - take two,” http://www.convertingquarterly.com/blogs/substrate-secrets/id/7721/treatment..., Jan 2015.

2644. Mount, E.M. III, “Adhesion loss in metallized laminations,” http://www.convertingquarterly.com/substrate-secrets/adhesion-loss-in..., May 2016.

2649. Mount, E.M. III, “Substrate secrets: How do we test for invisible variations in film surface energy?,” Converting Quarterly, 6, 14-15, (May 2016).

2688. Mount, E.M. III, “Substrate secrets: How can we optimize various substrate surfaces for proper adhesion?,” Converting Quarterly, 7, 16-17, (May 2017).

2799. Mount, E.M. III, “Substrate secrets: How do we design a substrate to have enhanced surface chemistry? Part 1,” Converting Quarterly, 9, 12, (Oct 2019) (also in http://www.convertingquarterly.com/substrates/how-do-we-design-a-substrate...).

2804. Mount, E.M. III, “How do we design a substrate to have enhanced surface chemistry? Part 2 of 2,” http://www.convertingquarterly.com/substrates/how-to-design-a-substrate-to-have-enhanced-surface-chemistry?, Feb 2020 (also in Converting Quarterly, V. 10, p. 12-13, Feb 2020).

3047. Mount, E.M. III, “Film surface treatment mysteries,” Converting Quarterly, 15, 38-41, (Jan 2025).

692. Mount, E.M. III, and A.J. Benedict, “Metallisable heat-sealable, oriented polypropylene film has layer of copolyester to improve bonding to metal,” European Patent #444340, 1991.

An oriented, heat sealable polypropylene film is provided having a metallizable surface. The film includes a core layer derived from isotactic polypropylene containing an effective amount of adhesion promoting agent. A copolyester layer is bonded to the core layer, the adhesion promoting agent protecting against the delamination thereof. A heat sealable layer formed from an ethylene-propylene random copolymer is bonded to the opposite side of the core layer. The film is formed as a coextrudate and is biaxially oriented.

2808. Mount, E.M. III, and J.R. Wagner Jr., “Enhanced barrier vacuum metallized films,” U.S. Patent 5981079, Nov 1999.

A multi layer film having enhanced barrier properties against transmission of oxygen and water vapor is provided. The multi layer film includes a polypropylene base layer, with a high density polyethylene layer on at least one surface of the polypropylene base layer. The polyethylene layer includes a surface which has been subjected to plasma treatment with a hydroxyl-donating material such as a methanol. The film further includes a metal layer deposited on the plasma treated surface, such as a layer of vacuum deposited aluminum. Multi layer films according to the present invention are particularly useful as packaging films for food products.

 

<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | Next-->