Accudynetest logo

Products available online direct from the manufacturer

ACCU DYNE TEST ™ Bibliography

Provided as an information service by Diversified Enterprises.

3040 results returned
showing result page 47 of 76, ordered by
 

593. Wallace, E. Jr., et al, “Contact angle titration and ESCA analysis of polyester surfaces modified by flame and corona treatment,” in ANTEC 95, Society of Plastics Engineers, 1995.

590. Vetelino, K.A., et al, “A novel microsensor technique for polymer surface characterization,” in ANTEC 95, Society of Plastics Engineers, 1995.

573. Sherman, P.B., “Surface preparation techniques,” in Decorating Div. ANTEC 1995, Society of Plastics Engineers, 1995.

565. Seaman, R., “Surface preparation by corona discharge: clean, green, and cost-effective,” in Decorating Div. ANTEC 1995, Society of Plastics Engineers, 1995.

549. Prinz, E., and F. Forster, “New trends in corona technology for high and stable adhesion,” in 1995 European Film, Extrusion Coating, and Coextrusion Symposium Proceedings, TAPPI Press, 1995.

505. Klemberg-Sapieha, J.E., et al, “Surface enhancement of polymers by low pressure plasma treatments,” in ANTEC 95, Society of Plastics Engineers, 1995.

500. Kaplan, S.L., “Plasma pretreatment for the painting of plastics,” in Decorating Div. ANTEC 95, Society of Plastics Engineers, 1995.

499. Kamusewitz, H., et al, “How do contact angles reflect adsorption phenomena?,” in ANTEC 95, Society of Plastics Engineers, 1995.

491. Jalbert, C., et al, “The effects of end groups on surface and interface properties,” in ANTEC 95, Society of Plastics Engineers, 1995.

451. DiGiacomo, J.D., “Flame plasma applications: surface preparation techniques,” in Decorating Div. ANTEC 1995, Society of Plastics Engineers, 1995.

448. Davidson, R., “Gas phase modification of PP and PET surfaces,” in Decorating Div. ANTEC 1995, Society of Plastics Engineers, 1995.

424. Blitshteyn, M., “Surface treatment of polyolefin parts with electrical discharge,” in Decorating Div. ANTEC, Society of Plastics Engineers, 1995.

420. Bergbreiter, D.E., et al, “New approaches in polymer surface modification,” in ANTEC 95, Society of Plastics Engineers, 1995.

818. Lunkwitz, K., W. Burger, U. Lappan, H.-J. Brink, and A. Ferse, “Surface modification of fluoropolymers,” J. Adhesion Science and Technology, 9, 297-310, (1995) (also in Polymer Surface Modification: Relevance to Adhesion, K.L. Mittal, ed., p. 349-362, VSP, May 1996).

812. Murahara, M., and K. Toyoda, “Excimer laser-induced photochemical modification and adhesion improvement of a fluororesin surface,” J.Adhesion Science and Technology, 9, 1601-1609, (1995) (also in Polymer Surface Modification: Relevance to Adhesion, K.L. Mittal, ed., p. 213-222, VSP, May 1996).

811. Zhang, J.-Y., H. Esrom, U. Kogelschatz, and G. Emig, “Modifications of polymers with UV excimer radiation from lasers,” J. Adhesion Science and Technology, 9, 1179-1218, (1995) (also in Polymer Surface Modification: Relevance to Adhesion, K.L. Mittal, ed., p.153-184, VSP, May 1996).

2770. Kilpadi, D.V., and J.E. Lemons, “Surface energy characterization of unalloyed titanium implants,” J. Biomedical Materials Research, 28, 1419-1425, (Dec 1994).

Osteointegration is dependent on a variety of biomechanical and biochemical factors. One factor is the wettability of an implant surface that is directly influenced by its surface energy. This investigation used the Zisman plot to determine critical surface energy. The effects of surface treatment, bulk grain size, and surface roughness on the critical surface tension of unalloyed titanium (Ti) were examined. Radio frequency glow discharge-treated Ti had the highest critical surface tension, followed by the passivated and heat-sterlized conditions. Titanium with no surface treatment had the lowest critical surface tension. The surface energy of Ti with an average grain size of 23 μm was not significantly different from that with a grain size of 70 μm. Surface roughness was shown to cause significant difference in measurements and definitely should be considered in studies of this kind. © 1994 John Wiley & Sons, Inc.
https://onlinelibrary.wiley.com/doi/abs/10.1002/jbm.820281206

1078. Blitshteyn, M., B.C. McCarthy, and T.E. Sapielak, “Electrical surface treatment improves adhesive bonding,” Adhesives Age, 37, 20-23, (Dec 1994).

936. Griese, E.W. Jr., “Surface energy and surface tension,” Cork Ind., Dec 1994.

293. Podhajny, R.M., “Surface treating: how and how much,” Converting, 12, 36-42, (Dec 1994).

1680. Tsai, P.P.-Y., L. Wadsworth, P.D. Spence, and J.R. Roth, “Surface modifications of nonwoven webs using one atmosphere glow discharge plasma to improve web wettability and other textile properties,” in Proceedings of the 4th Annual TANDEC Conference on Meltblowing and Spunbonding Technology, TANDEC, Nov 1994.

406. no author cited, “Ceramic roller investment offers long-term savings,” Paper Film & Foil Converter, 68, 62, (Nov 1994).

349. Stobbe, B.D., “Treater operations require comparison of energy costs,” Paper Film & Foil Converter, 68, 60-61, (Nov 1994).

1951. Sutherland, I., E. Sheng, D.M. Brewis, and R.J. Heath, “Flame treatment and surface characterisation of rubber-modified polypropylene,” J. Adhesion, 44, 17-27, (Oct 1994).

949. Podhajny, R.M., “Converters consultant: How does dynamic surface tension affect ink printability?,” Converting, 12, 14, (Oct 1994).

339. Sherman, P.B., “Use of ozone can improve production environment,” Paper Film & Foil Converter, 68, 42-44, (Oct 1994).

301. Ranoia Alonso, M., “The royal treatment,” Package Printing, 41, 26-31, (Oct 1994).

2022. Matienzo, L.J., J.A. Zimmerman, and F.D. Egitto, “Surface modification of fluoropolymers with vacuum ultraviolet irradiation,” J. Vacuum Science and Technology A, 12, 2662-2671, (Sep 1994).

1950. Woods, D.W., P.J. Hine, R.A. Duckett, and I.M. Ward, “Effect of high modulus polyethylene fibre surface treatment on epoxy resin composite impact properties,” J. Adhesion, 45, 173-189, (Sep 1994).

1443. Badey, J.P., E. Espuche, Y. Jugnet, T.M. Duc, and B. Chabert, “Surface modification of PTFE by microwave plasma downstream treatment to improve adhesion with an epoxy matrix,” in Euradh '94 Conference Proceedings, 386-389, Sep 1994.

946. Cox, E.O., “Should water or UV be in your clean air future?,” Flexo, 19, 12-16, (Sep 1994).

633. Ellul, M.D., and D.R. Hazleton, “Chemical surface treatments of natural rubber and EDPM thermoplastic elastomers: effects on friction and adhesion,” Rubber and Chemical Technology, 67, 582-601, (Sep 1994).

Natural rubber thermoplastic elastomers (NRTPEs) made by dynamic vulcanization of natural rubber during its mixing with polypropylene were subjected to various halogenation surface treatments. Marked reduction in the coefficient of friction is possible depending on the chemical treatment employed, TPE composition and the presence of a lubricant. As a result of halogenation there is an increase in the microroughness and hardness of the NRTPE surface. These effects in part explain the large decrease in the friction coefficients since the contact area is decreased. Thus NRTPE can be employed in applications requiring low friction, such as certain types of seals. Another consequence of halogenation of NRTPE is the increase in its surface energy which in turn promotes adhesion to various polar substrates. Indeed it was determined that halogenation of NETPE is an effective way of priming the surface of these materials for adhesion to acrylic and other substrates. Ethylene Propylene Diene Monomer rubber-Polypropylene thermoplastic elastomers (EPTPEs) were used as a control in this study to assess how a low unsaturation EPDM-based TPE compares with the high unsaturation NRTPEs in different halogenation surface treatments.

389. Wool, R.P., Polymer Interfaces: Structure and Strength, Hanser Gardner, Sep 1994.

338. Sherman, P.B., S. Greig, and E.H. Gray, “Adhesion promoters in the manufacture of self-adhesive materials,” in 1994 Polymers, Laminations and Coatings Conference Proceedings, 201-210, TAPPI Press, Sep 1994.

231. Markgraf, D.A., “Corona treatment: an overview,” in 1994 Polymers, Laminations and Coatings Conference Proceedings, 159-188, TAPPI Press, Sep 1994.

With the advent of readily available nonpaper substrates (plastics and foils) in the mid-to-late 1950’s, the requirement for a reliable production speed surface treatment process became apparent. Several different technologies have been tried, but one, corona treatment, has become, by far, the primary surface treatment technology used across the Extrusion and Converting Industries. We will touch on these various technologies, technically describe the need for surface treatment and how it is measured, trace the development of corona treatment as the leading surface treatment method, and detail the current state-of-the-art in equipment, control parameters and applications.

205. Kuusipalo, J., and A. Savolainen, “Ozone, generated at corona treater, as an adhesion promoter in extrusion coating,” in 1994 Polymers, Laminations and Coatings Conference Proceedings, 325-333, TAPPI Press, Aug 1994 (also in TAPPI J., Vol. 77, p.162-166 (Dec 1994)).

The trials documented in this paper were run on a pilot coextrusion coating line at the Tampere University of Technology's Institute of Paper Converting in Finland. The study was conducted to test the ozonization system that was installed in our pilot line to treat the polymer melt in extrusion coating. The effect of the ozone, generated at the corona treater, on adhesion was studied. Ozone was first captured and transported to the nip with separate pipes. It was then led to an air knife near the air gap and blown against the polymer melt. The measured adhesion showed the usefulness of this technique. The following parameters were varied to determine the effectiveness of the ozone: substrate, line speed, coating weight, and melt temperature. Results indicated that thicker coating weights and higher melt temperatures improved adhesion values. The corona-generated ozone clearly improved adhesion compared to corona-treated or untreated samples.

30. Blitshteyn, M., “Wetting tension measurements on corona-treated polymer films,” in 1994 Polymers, Laminations and Coatings Conference Proceedings, 189-195, TAPPI Press, Aug 1994 (also in TAPPI J., V. 78, p. 138-143, Mar 1995).

22. Biggs, D., and R. Fredricks, “A study of wetting tension solutions,” TAPPI J., 77, 94-99, (Aug 1994).

2082. Le, Q.T., J.J. Pireaux, and J.J. Verbist, “Surface modification of PET films with RF plasma and adhesion of in situ evaporated Al on PET,” Surface and Interface Analysis, 22, 224-229, (Jul 1994).

PET (Polyethylene terephthalate) films were modified with two different plasmas, nitrogen and oxygen, as a function of treatment times and RF powers. Firstly, the chemical composition of the plasma-modified PET films was investigated by XPS. In the case of nitrogen plasma, the formation of amine, imine and amide groups is detected. A slight diffusion of nitrogen-containing species into the PET bulk is also observed by angle-resolved XPS measurements. The appearance of alcohol, carbonyl and carboxyl functions is observed in the case of oxygen plasma treatment. After thermal deposition of an aluminium film, peel tests reveal that the Al/PET adhesion increases as follows: untreated < nitrogen plasma < oxygen plasma treatment.

Secondly, after sevderal successive depositions of thermally evaporated Al on oxygen plasma treated PET film, XPS was used to study the chemistry at the interface. The XPS results reveal that the additional reactive sites created on the PET surface by the treatment explain the significant improvement in Al/PET adhesion observed for plasma-modified samples.

2047. Tsuchida, M., and Z. Osawa, “Effect of ageing atmospheres on the changes in surface free energies of oxygen plasma-treated polyethylene films,” Colloid and Polymer Science, 272, 770-776, (Jul 1994).

The changes in the surface properties of oxygen plasma-treated polyethylene films during ageing in various atmospheres (water, dry nitrogen gas, and hexane) were studied from the viewpoint of the interaction of the surface functional groups formed on the films and the ageing media. The XPS (x-ray photoelectron spectroscopy) and the SSIMS (static secondary ion mass spectrometry) spectra indicated the formation of polar groups containing oxygen such as C=O on the film surface. The changes in the critical surface tension (γC) of the film with ageing time were largely affected by the ageing atmospheres: the γC value of the film aged in water increased, and those of the films aged in nitrogen gas and hexane decreased with an increase in ageing time. These different tendencies among the ageing media could be understood reasonably with examining the surface free energy ratios (the total energy, γtotS, the dispersion force component, γdStotS, the polar component, γpStotS, the hydrogen bonding component, γhStotS) of the films. The ageing in water of which γL is large gave the films with higher γpStotS values, suggeting that the overturn and/or the orientation of the polar groups toward the water phase occurred so as to minimize the discrepancy of the surface free energy between the polymer surface and water. On the other hand, the ageing in nitrogen gas and hexane media of which γL are small gave the films with lower γpStotS and γhStotS values, suggesting the overturn and/or the orientation of the polar groups into the bulk polymer.

 

<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | Next-->