Accudynetest logo

Products available online direct from the manufacturer

ACCU DYNE TEST ™ Bibliography

Provided as an information service by Diversified Enterprises.

3040 results returned
showing result page 2 of 76, ordered by
 

2875. no author cited, “Buddy, can you spare a dyne?,” Enercon Industries, Nov 2021.

2880. Miller, M., “The effects of surface treatment at the coating-head interface,” Converting Quarterly, 11, 60-63, (Oct 2021).

2877. Sabreen, S.R., “Industrial liquid coating of plastic products - adhesion surface science,” Plastics Decorating, 50-52, (Oct 2021).

2876. Plantier, M., “Improving UV coating results with corona and plasma surface preparation,” UV + EB Technology, 7, 30-32, (Oct 2021).

2873. no author cited, “Q&A - Vetaphone: Know your films!,” PFFC, 26, 30-33, (Oct 2021).

2879. Chen, R., and R. Blaik, “Plasma treatment transforms plastic parts into high-value products,” Plastics Decorating, 50-52, (Jul 2021).

2847. Nzeribe, K., “Advancements in manufacturing hydrophilic porous plastics,” https://www.medicalplasticsnews.com/medical-plastics-industry-insights/medical-plastics-materials-insights/advancements-in-manufacturing-hydrophilic-porous-plastics, Jul 2021.

2990. Cen-Puc, M., A. Schander, M.G. Vargas Gleason, and W. Lang, “An assessment of surface treatments for adhesion of polyimide thin films,” Polymers, 13, (Jun 2021).

Polyimide films are currently of great interest for the development of flexible electronics and sensors. In order to ensure a proper integration with other materials and PI itself, some sort of surface modification is required. In this work, microwave oxygen plasma, reactive ion etching oxygen plasma, combination of KOH and HCl solutions, and polyethylenimine solution were used as surface treatments of PI films. Treatments were compared to find the best method to promote the adhesion between two polyimide films. The first selection of the treatment conditions for each method was based on changes in the contact angle with deionized water. Afterward, further qualitative (scratch test) and a quantitative adhesion assessment (peel test) were performed. Both scratch test and peel strength indicated that oxygen plasma treatment using reactive ion etching equipment is the most promising approach for promoting the adhesion between polyimide films.

3000. Thompson, R., D. Austin, C. Wang, A. Neville, and L. Lin, “Low-frequency plasma activation of nylon 6,” Applied Surface Science, 544, (Apr 2021).

In the study reported in this paper, a series of reproducible conditions were employed to uniformly functionalize nylon 6 surfaces using a commercially available, low-frequency (40 kHz), low-pressure plasma system, utilizing oxygen plasma as a reactive gas. Initially, the plasma-treated samples were investigated using static contact angle measurements, showing a progressive increase in wettability with increasing plasma activation time between 10 and 40 s. Such an increase in wettability (and therefore increase in adhesive capabilities of the surfaces) was attributed to the creation of surface C-OH, C=O, and COOH groups. These surface-chemical modifications were characterized using x-ray photoelectron spectroscopy (XPS) and static secondary ion mass spectrometry (SSIMS). Surface radical densities were also shown to increase following plasma activation, having been quantified using a radical scavenging method based on the molecule 2,2-diphenyl-1-picrylhydrazyl (DPPH). The samples were imaged and analyzed using scanning electron microscopy (SEM) and atomic force microscopy (AFM), to confirm that there had been no detectable alteration to the surface roughness or morphology. Additionally, the “hydrophobic recovery” or “ageing” of the activated polymer samples, post-plasma treatment, was also investigated in terms of wettability and surface-chemistry, with the wettability of the sample surfaces decreasing over time due to a reduction in surface-oxygen concentration.

2957. Aydemir, C., B.N. Altay, and M. Akyol, “Surface analysis of polymer films for wettability and ink adhesion,” Color Research and Application, 46, 489-499, (Apr 2021).

The interaction between inks and substrates is critical during printing. Adhesion of the ink film is determined by the reciprocal interactions of polar and nonpolar (dispersive) components between polymer films and inks. The greater the similarity between the polar and dispersive components of inks, coating and substrates, the better the wetting and adhesion on the surface of printing substrate. Various liquid materials in printing such as inks, varnishes, lacquers, and adhesives contain high ratios of water. The highly polar nature of water makes the interaction of these materials unsuitable with predominantly disperse polymer surfaces. Some films with polyolefin structure, especially polypropylene, and polyethylene, are nonpolar and cannot form strong bonds with ink, varnish, or lacquer coatings due to their chemical structure. Increasing surface energy components overcomes the poor wetting and adhesion on polymer surfaces. In this review, the topics of water contact angle measurement and determination of surface energy, surface tension, and using sessile drop method for the wettability and ink adhesion of polymer films are surveyed. Information on structural and chemical processes was given that assists in obtaining wettable film surfaces. Recommendations were made for good adhesion and printability based on surface treatment methods and ink modification.

2949. Luque-Agudo, V., M. Hierro-Oliva, A.M. Gallardo-Moreno, and M.L. Gonzalez-Martin, “Effect of plasma treatment on the surface properties of polylactic acid films,” Polymer Testing, 96, (Apr 2021).

Plasma treatment is one of the methods currently used to obtain polymeric materials with surface properties appropriate to the functionality for which they were designed. However, the effects achieved after surface modification are not always long lasting and involve chemical and physical changes in the outermost layer. In this context, the effects of both argon and oxygen plasma on polylactic acid (PLA) films deposited on titanium were studied to determine which physical and chemical processes occur at the surface, and their duration. Regarding physical surface changes, there were scarcely any differences between both plasmas: roughness was very similar after treatments, root mean square height (Sq) being 10 times higher than the control, without plasma. Water contact angle (WCA) showed that the surface became more hydrophilic after application of the plasma, although hydrophilization was longer lasting in the case of argon treatment.

With regard to chemical changes, it was observed that the argon plasma treatment caused greater fragmentation of the polymer chains, and increased crosslinking between them. ToF-SIMS analysis made it possible to propose mechanisms to explain the formation of the fragments observed.

2881. Plantier, M., “Surface-treating insights for the various substrates used in lithium-ion battery production,” Converting Quarterly, 11, 36-38, (Apr 2021).

2878. Sabreen, S.R., “Single-pass UV LED inkjet printing on 3D plastics - ink chemistry and polymer surfaces,” Plastics Decorating, 44-46, (April 2021).

3005. no author cited, “What is the difference between surface tension and surface energy,” Brighton Science, Mar 2021.

3004. no author cited, “What is the difference between surface free energy and surface energy?,” Brighton Science, Mar 2021.

2844. Gerke, G., “Can plasma surface treatment deliver sustainable solutions and reduce cost?,” https://digitaledition.flexpackmag.com/march-2021/plasma-surface/?oly_enc_id=1127B7669590J0V, Mar 2021.

2845. Lustig, C., and S. Chakrapani, “UV-curable coatings: Options for challenging substrates,” UV + EB Technology, 7, 34-40, (Feb 2021).

2842. Plantier, M., “Corona or plasma? Which surface treatment technology is best for my application?,” PFFC, 26, 12-14, (Feb 2021).

2843. Lee, W., “Ask the expert: Evaluating surface pretreatment technologies,” Plastics Decorating, 54-57, (Jan 2021).

2920. Das. B., D. Chakrabarty, C. Guha, and S. Bose, “Effects of corona treatment on surface properties of co-extruded transparent polyethylene film,” Polymer Engineering & Science, 61, 1449-1462, (2021).

2838. no author cited, “How to: Know what to look for when purchasing a corona treater,” PFFC, 25, 27, (Nov 2020).

2820. Smith, R.E., “Test marker results seem inconclusive,” http://www.accudynetest.com/blog/test-marker-results-seem-inconclusive/, Nov 2020.

2868. Muratov, I., R. Garapov, A Eframova, and A. Khasanov, “The effect of surface treatment of PET films on adhesive properties,” Key Engineering Materials, 869, 394-399, (Oct 2020).

In this work we studied the effect of surface treatment of PET films, which are widely used in food packaging, on the adhesion value of ink layers based on polyvinyl chloride. To give high barrier properties to packaging laminates, the films used in their structure are coated with a nanolayer of aluminum oxide (AlOx). However, these films have a disadvantage associated with the low adhesion of adhesive and ink layers to the AlOx nanolayer. To eliminate this disadvantage, aluminium oxide nanolayer is additionally coated with various polymer coatings. In this work we studied the effect of a polyacrylic coating applied on top of an AlOx layer on improving the adhesion of ink layers. For PET films used in food packaging, optical and surface properties are also important. In this regard, additionally we measured surface free energy, coefficient of friction, and optical properties of the studied PET films. We also highlight the relationship of contact angles of wetting and the work of adhesion for the printing ink with the measured adhesion of ink layers.

2837. Sabreen, S.R., “Improving polymer adhesion: Advancements for low surface energy plastics applications,” Plastics Decorating, 48-51, (Oct 2020).

2836. Wolf, R.A., “Modifying surface properties in extrusion coating & laminating,” Converting Quarterly, 10, 52-56, (Oct 2020).

2835. McKell, K., and K. Bredgaard, “Specialized plasma technology improves adhesion of water-based materials,” Converting Quarterly, 10, 47-50, (Oct 2020).

2823. Eisby, F., “Surface treatment for labels: Evolving technology in a changing market,” PFFC, 25, 24, (Oct 2020).

2822. Robinson, K., “Static control for corona treaters,” PFFC, 25, 14-18, (Oct 2020).

2819. Smith, R.E., “Personal commmunication re Flexible Packaging article 'Converters and the evolution of dyne testing',” Diversified Enterprises, Oct 2020.

2818. no author cited, “Converters and the evolution of dyne testing,” Flexible Packaging, 26-28, (Sep 2020).

2996. Abdel-Fateh, E., and M. Alshaer, “Polyimide surface modification using He-H2O atmospheric pressure plasma jet-discharge power effect,” Coatings, 10, (Jul 2020).

The atmospheric pressure He- H 2 O plasma jet has been analyzed and its effects on the Kapton polyimide surface have been investigated in terms of discharge power effect. The polyimide surfaces before and after plasma treatment were characterized using atomic force microscopy (AFM), X-ray photoelectrons spectroscopy (XPS) and contact angle. The results showed that, increasing the discharge power induces remarkable changes on the emission intensity, rotational and vibrational temperatures of He- H 2 O plasma jet. At the low discharge power ≤5.2 W, the contact angle analysis of the polyimide surface remarkably decrease owing to the abundant hydrophilic polar C=O and N–C=O groups as well as increase of surface roughness. Yet, plasma treatment at high discharge power ≥5.2 W results in a slight decrease of the surface wettability together with a reduction in the surface roughness and polar groups concentrations.

2827. Kohinhofer, G., “Reviewing surface treatments: Decorating, printing and bonding on plastic IS possible,” https://plasticsdecorating.com/enews/2020/reviewing-surface-treatments-decorating-printing-and-bonding-on-plastic-is-possible, Jul 2020.

2821. Sabreen, S.R., “Flame plasma surface modification of polymers for adhesion bonding: Process control, equipment and applications,” Plastics Decorating, 40-45, (Jul 2020).

2927. no author cited, “How to control additive blooming in polymer films,” Brighton Science, Jun 2020.

3003. no author cited, “Single vs. multi-fluid contact angle techniques part 2: Why one fluid is all you need for process control in manufacturing,” Brighton Science, May 2020.

3002. no author cited, “Single vs. multi-fluid contact angle techniques part 1: Surface energy and the attractions between substances,” Brighton Science, May 2020.

2813. Kasson, A., and F. Fiddler, “Effects of surface treatment on adhesion for plastic components,” Plastics Decorating, 40-42, (May 2020).

2924. Maroofi, A., N. Navah Safa, and H.Ghomi, “Atmospheric air plasma jet for improvement of paint adhesion to aluminum surface in industrial applicationss,” Intl. J. Adhesion and Adhesives, 98, (Apr 2020).

Improvement of paint adhesion to aluminium surfaces is one of the main challenges in many industrial applications. In this paper, we introduce the atmospheric pressure air plasma jet as an appropriate candidate for preparation of 5052 aluminium surface alloy to improve paint adhesion in the industrial level. The employed plasma jet can promote paint adhesion to aluminium surface at the treatment velocity of 2 m/min and plasma size of 10 mm. Based on the cross-cut test, adhesion of polyurethane paint to the surface greatly increases from 1B to 5B level due to the plasma treatment. According to the results, the surface wettability increases under the influence of the plasma treatment so that water droplet contact angle reduces from 79.0°±2.0°–27.5°±2.0° after the treatment. Dyne test ink also denotes the increment of surface energy to the greater than 72 mN/m. Besides, we employ various analytical methods to investigate the physical and chemical changes arise from the plasma processing to the surface. Atomic force microscopy (AFM) results show a twofold increase in the roughness parameters of plasma treated surface which can result in a stronger paint and surface interlocking. Chemical analysis of the surface reveals that plasma treatment of the aluminium surface leads to the surface cleaning and formation of hydrophilic functional groups that attract much more water towards the surface and improves the paint adhesion.

2860. Yonemoto, Y., “Estimating critical surface tension from droplet spreading area,” Physics Letters A, 384, (April 2020).

Critical surface tension (CST) is a measure of solid surface tension and is mainly determined by measuring the contact angle of a droplet on a target solid surface. The concept of CST makes it possible to determine solid surface tension without any unprovable assumptions such as the Fowkes hypothesis. However, it requires somewhat special devices and skills for measuring the contact angle. In this work, we propose a simple method to determine the CST of a solid by measuring the droplet spreading area. This method is developed by combining the conventional CST with a simple analytical droplet model. The difference in estimated CSTs between our method and the conventional one is within 3.0%. Our method enables a quick and simple evaluation of the solid surface tension without special devices for measuring the contact angle.

2965. Altay, B.N., R. Ma, P.D. Fleming, M.J. Joyce, A. Anand, et al, “Surface free energy estimation: A new methodology for solid surfaces,” Advanced Materials Interfaces, 7, (Mar 2020).

An interpretation of solid surfaces is generated based on physical considerations and the laws of thermodynamics. Like the widely used Owens–Wendt (OW) method, the proposed method uses liquids for characterization. Each liquid provides an absolute lower bound on the surface energy with some uncertainty from measurement variations. If multiple liquids are employed, the largest lower bound is taken as the most accurate, with uncertainty due to measurement errors. The more liquids used, the more accurate is the greatest lower bound. This method links generalizations of the Good–Girifalco equation with a general thermodynamic inequality relating the three-interfacial tensions in a three-phase equilibrium system. The method always satisfies this inequality with better than a 65% certainty. However, the OW seldom, if ever, conforms to this inequality and even then, the degree of satisfaction is insignificant. A reconciliation of the two methods is proposed based on rescaling the OW surface energies to conform to the inequality. This enables interpretations of dispersion and polar components of the surface energy, which are thermodynamically self-consistent. The proposed method is also capable of dealing with material exchange between liquid and solid phases, when the surface tension and contact angle of the saturated liquids can be measured.

 

<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | Next-->