ACCU DYNE TEST ™ Bibliography
Provided as an information service by Diversified Enterprises.
showing result page 77 of 77, ordered by
1659. van Oss, C.J., and R.J. Good, “Surface tension and the solubility of polymers and biopolymers: the role of polar and apolar interfacial free energies,” J. Macromolecular Science, A26, 1183-1203, (1989).
Surface tension data can be used for estimating the solubility of polymers in liquids. By determining the apolar and the polar components of the surface tension of polymers and of solvents, the attractive free energy, δG121, of a polymer (1) in a given solvent (2) can be established. By also taking into account the contactable surface area of two polymer molecules, immersed in a liquid, δG121 can be expressed in units of kT. Solubility then is favored when -1.5 kT < δG121 < 0 for apolar systems, and when -1.5 kT < δG121 for polar systems. In polar solvents, hydrogen bonding can often increase δG121 from <-1.5 kT to > + 1.5 kT. Positive values are frequently attained and this strongly shifts the behavior from insolubility to solubility. A number of proteins exemplify this behavior.
2097. van der Leeden, M.C., and G. Frens, “Surface properties of plastic materials in relation to their adhering performance,” Advanced Engineering Materials, 4, 280-289, (2002).
Adhesion between polymeric phases like adhesives and plastic surfaces is critical in many technological and industrial applications. In the last decades much progress has been made to understand the impact of the surface properties of both phases on the adhesive strength between them. These surface properties influence processes like wetting, molecular adsorption and inter-diffusion which determine how an interface develops into an interphase after the two materials have been brought into contact. Ultimately, the properties of this interphase determine the overall adhesion strength of an assembly. In this paper important parameters in the adhesion process will be reviewed, including methods to engineer these parameters in order to attain adhesion strengths ranging from complete release to irreversible bonding.
1584. von Arnim, V., T. Stegmaier, D. Praschak, T. Bahners, A. Lunk, et al, “Continuous plasma treatment of textiles under atmospheric pressure,” in Proceedings of the 29th Aachen Textile Conference, DWI an der RWTH Aachen University, 2002.
<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | Next-->