ACCU DYNE TEST ™ Bibliography
Provided as an information service by Diversified Enterprises.
showing result page 56 of 77, ordered by
264. Occhiello, E., M. Morra, G. Morini, F. Garbassi, and P. Humphrey, “Oxygen-plasma-treated polypropylene interfaces with air, water, and epoxy resins, Part II. Epoxy resins,” J. Applied Polymer Science, 42, 2045-2052, (1991).
XPS, SEM, SSIMS, FTIR-ATR, water-in-air, and air-in-water contact angle measurements have been used to unambiguously characterize the locus of failure of PP/epoxy joints. In the case of untreated PP, the fracture has been found adhesive, whereas in oxygen plasmatreated PP, it is cohesive, within bulk PP, but close to the modified PP-bulk PP interface. The smoothness of fracture surfaces allowed us to exclude mechanical interlocking effects. Shear-strength measurements showed that the mechanical strength of the joint was improved by plasma treatment. Preliminary thermal equilibration of the plasma-treated PP sample and changes in the curing cycle of the epoxy resin did not change either the locus of failure or the shear strength of the joint. The reason is probably because the number of polar functions left at the surface after thermal equilibration is sufficient to induce adhesion. The mechanical strength of the PP surface layer may be the determining factor. Fracture energy calculations showed that the observed locus of failure is the same as predicted on the basis of surface energy considerations.
263. Occhiello, E., M. Morra, G. Morini, F. Garbassi, and P. Humphrey, “Oxygen-plasma-treated polypropylene interfaces with air, water, and epoxy resins, Part I. Air and water,” J. Applied Polymer Science, 42, 551-559, (1991).
Oxygen plasma treatment of polypropylene (PP) surfaces led to introduction of oxygencontaining functionalities, with consequent improvement of surface wettability. A combination of X-ray photoelectron spectroscopy (XPS), static secondary ion mass spectroscopy (SSIMS), and contact angle measurements (water-in-air and air-in-water) allowed us to characterize the behavior of the treated surface in contact with air (low-energy surface) and water (high-energy surface).
The treated surface showed the tendency to rearrange itself to minimize its interfacial energy. When contacted with air (low-energy surface), polar groups were buried away from the polymer/air interface, while in contact with water (high-energy surface) polar groups remained at the polymer/water interface.
When contacted with air, the polymer surface layer rearranged by macromolecular motions within itself, since interdiffusion with the bulk polymer seems forbidden. These motions are thermally activated and it was possible to obtain an apparent activation energy (58.1 kJ/mol) close to those reported for other vinyl polymers.
254. Nakayama, Y., F. Soada, and A. Ishitani, “Surface analysis of plasma-treated poly(ethylene terephthalate) film,” Polymer Engineering and Science, 31, 812-817, (1991).
Surface structures of poly(ethylene terephthalate) films produced by stretching after Ar plasma-treatment were analyzed by X-ray photoelectron spectroscopy, combined with a gas chemical modification technique, secondary ion mass spectrometry, and transmission electron microscopy. The formation of ultra-fine protrusions that produce good slip and a smooth film surface after the stretching procedure was confirmed. The height of the protrusions was almost the same as the thickness of the osmic acid-dyeable layer. The thickness of the modified layer was found to change according to the Ar pressure of the plasmatreatment. Carboxylic and hydroxyl groups produced by the plasma-treatment were quantified. The formation of these functional groups can explain good adhesion of the film.
211. Lavielle, L., J. Schultz, and K. Nakajima, “Acid-base surface properties of modified poly(ethylene terephthalate) films and gelatin: relationship to adhesion,” J. Applied Polymer Science, 42, 2825-2831, (1991).
Characterization of poly(ethylene terephthalate) (PET) films surfaces through wettability measurements and inverse gas chromatography techniques leads to a better knowledge of the potential interactions with a coating. An important case is the one relative to gelatin coatings for photographic films. In order to favor adhesion on PET, it is of interest to examine the problem in terms of acid–base interactions. PET is found amphoteric and gelatin rather basic. Several surface treatments on PET like orientation on water and flame or plasma treatment in air lead to an increase in surface acidity. Adhesion with gelatin as determined by the peel test is increased through a flame treatment, because of the higher acidity of PET and subsequent chemical bonding at the interface. Determination of acid-base surface properties of PET and gelatin appears to be an excellent tool for adhesion prediction.
190. Kawese, T., M. Uchita, T. Fujii, and M. Minagawa, “Acrylic acid grafted polyester surface: surface free energies, FT-IR (ATR), and ESCA characterization,” Textile Research J., 61, 146-152, (1991).
The surface of polyester grafted with acrylic acid has been characterized using contact angle measurements of a two-liquid phase system and FT-IR and ESCA spectroscopy as a function of the concentration of acrylic acid on grafting. The COOH groups on the polymer surface influence only the polar component γs p of surface energy and not the dispersive one γs d. Both the FT-IR and ESCA characterizations, showing the transformation of COOH to COONa by alkaline treatment, provide information with a high degree of surface sensitivity, comparable to that of contact angle measurements. The relative area ratios of the COONa peak to the COOR peak by FT-IR ( Asurface) and of the Na1s peak to the C1s peak by ESCA are linearly correlated to γsp.
135. Giroux, T.A., and S.L. Cooper, “Surface characterization of plasma-derivatized polyurethanes,” J. Applied Polymer Science, 43, 145-155, (1991).
The use of plasma deposition to introduce sulfonate groups to the surface of a polyurethane was attempted. In previous work, the bulk incorporation of sulfonate groups was found to improve the blood contacting properties of the base polyurethane but physical properties in the hydrated state were adversely affected. Plasma deposition schemes involving ammonia and sulfur dioxide were utilized in an attempt to incorporate sulfonate groups. Surface characterization by X-ray photoelectron spectroscopy (XPS) and contact angle measurements was used to follow polymer surface rearrangement dynamics and to address the issue of plasma chemistry specificity. Concerns of reaction specificity were alleviated by using the plasma as a pretreatment which is followed by a chemical surface derivatization.
101. Foerch, R., J. Izawa, and G. Spears, “Comparative study of the effects of remote nitrogen plasma, remote oxygen plasma, and corona discharge treatments on the surface properties of polyethylene,” J. Adhesion Science and Technology, 5, 549-564, (1991).
The effects of remote nitrogen plasma, remote oxygen plasma, and corona discharge treatments on linear low-density polyethylene were studied with regard to the chemical and physical surface modification, depth of modification, and surface stability. An attempt was made to correlate the type and the extent of modification with the printing and adhesion properties of the modified surfaces. Surface topography was studied using scanning electron microscopy. The relative percentages of nitrogen and oxygen on the surfaces were determined by X-ray photoelectron spectroscopy. Printing and adhesion tests were performed using standard, commercially available inks and adhesives.
100. Foerch, R., and D. Johnson, “XPS and SSIMS analysis of polymers: the effect of remote nitrogen plasma treatment on polyethylene, poly(ethylene vinyl alcohol) and poly(ethylene terephthalate),” Surface and Interface Analysis, 17, 847-854, (1991).
A study has been undertaken in which both x-ray photoelectron spectroscopy (XPS) and Fast atom bombardment static secondary ion mass spectrometry (FAB-SSIMS) have been used to study the effects of remote nitrogen plasma treatment on polymers such as linear low-density polyethylene (LLDPE), poly(ethylene vinyl alcohol) (EVOH) and poly(ethylene terephthalate) (PET). For comparison, remote oxygen plasma treatment was also performed on LLDPE. A very rapid uptake of nitrogen was observed for all polymers. Negative FAB-SSIMS indicated CN−, CNO− and C2N fragments on each of the nitrogen plasma-treated polmers. Positive FAB-SSIMS spectra of plasma-treated LLDPE showed relatively high intensity, high mass fragments, thought to originate from additives. These were not observed for the other two polymers. Significant amounts of aromatic-type fragments were observed in the positive FAB-SSIMS spectra of all treated polymers. Surface stability studies have shown that for both nitrogen and oxygen plasma-treaed LLDPE there is a substantial decrease in the surface functionality on exposure to air. This effect was much less prevalent for EVOH and PET.
78. Dewez, J.L., E. Humbeek, et al, “Plasma treated polymer films: Relationship between surface composition and surface hydrophilicity,” in Polymer-Solid Interfaces, 463-474, Inst. of Physics Publishing, 1991.
37. Brennan, W.J., W.J. Feast, H.S. Munro, and S.A. Walker, “Investigation of the ageing of plasma oxidized PEEK,” Polymer, 32, 1527-1530, (1991).
Oxygen plasma treatment can be used for increasing the hydrophilicity of polymer surfaces, however, it is widely known that this effect decays significantly with time. This ageing phenomenon is thought to be caused by both migration of low molecular weight fragments and reorientation of modified polymer chains. It has recently been shown that the aged surface becomes transiently hydrophilic before attaining a final surface energy significantly lower than the initially treated surface. X-ray photoelectron spectroscopy (XPS) and contact angle measurements were used to monitor the changes in surface chemistry of plasma oxidized poly(ether ether ketone) (PEEK) during post treatment storage. The decay and transient increase in hydrophilicity were found to be dependent upon crystallinity and storage temperature.
10. Asfardjani, K., Y. Segui, Y. Aurelle, and N. Abidine, “Effect of plasma treatments on wettability of polysulfone and polyetherimide,” J. Applied Polymer Science, 43, 271-281, (1991).
Experimental results on plasma treatments of polysulfone and polyetherimide to improve the wettability of these polymers are presented. The plasma is characterized by optical emission spectroscopy. The wettability of the polymer surfaces were checked by contact angle measurements and ESCA is used to compare the surfaces before and after plasma treatment. Correlations between contact angle, concentration of oxygen at the surface, and optical emission intensity of the OH radical have been established. Optimization of operational plasma parameters leading to the best wettability of the treated samples is reported.
1. Bassemir, R.W., and R. Krishnan, “Surface phenomena in waterbased flexo inks for printing on polyethylene films,” in Surface Phenomena and Fine Particles in Water-Based Coatings and Printing Technology, Sharma, M.K., and F.J. Micale, eds., 27-34, Plenum Press, 1991.
In the Flexographic printing of polyethylene films with waterbased flexo inks, the partitioning of the surfactants between film/ink, pigment/ water, ink/air interfaces plays a major role in determining the printability. In addition, in formulations containing nonionic surfactants the equilibrium surface properties are much different from the diffusion limited dynamic properties. Problems associated with the printability are examined from an analysis of the above surface chemical considerations.
2402. Arrington, E.E., D.A. Glocker, and T.J. Tatarzyn, “Atmospheric pressure glow discharge treatment of paper base material for imaging applications,” U.S. Patent 5888713, Mar 1999.
The present invention is a method of producing a photographic support. The method includes providing a photographic paper and transporting the photographic paper through an atmospheric glow discharge zone, wherein the atmospheric glow discharge zone contains a gas with a dielectric strength which is less than air. The atmospheric glow discharge zone is subjected to an electric frequency between 40 kHz and 13.56 Mhz and an electric field such that an atmospheric glow discharge is formed; and the photographic paper is coated with a polymeric coating.
2383. Kelly, P.T., “Corona-discharge treated release films,” U.S. Patent 4978436, Dec 1990.
Polyolefin coatings and films having release characteristics, also known as release sheets, are disclosed. The release sheets are formed by treating a sheet formed from polyolefin and dimethyl polysiloxane having functional end groups with a corona discharge. In a preferred embodiment, the release sheet is formed from polyolefin, the dimethyl polysiloxane, vinyl silane, an agent to graft the vinyl silane onto the polyolefin and a moisture curing agent by extrusion in the form of sheet, treating the sheet with a corona discharge and then subjecting the sheet to moisture. The release sheets may be used, for instance, as the backing sheet for labels.
1455. Kasemura, T., S. Ozawa, and K. Hattori, “Surface modification of fluorinated polymers by microwave plasmas,” J. Adhesion, 33, 33-44, (Nov 1990).
We developed a new plasma treating method, incorporating the use of microwaves generated by an electronic cooking range. Using this method, polytetrafluorethylene (PTFE) and a copolymer of tetrafluoroethylene and hexafluoropropylene (FEP) were treated. Dialkylphthalates (DAP) were used as the standard liquids of contact angle measurements for evaluation of the wetting properties of plasma treated polymers. The components of surface tension (γL) due to the dispersion force (γd L) and the polar force (γP L) of DAP were calculated by Fowkes' equation from the contact angles (θ) on polypropylene. After plasma treatment cos θ of several standard liquids on PTFE and FEP increased. The linear relationship between γL(1 + cos θ)/(γd L)½ and (γP L/γP L)½ was verified. γs and γd s and γd s of the plasma treated PTFE and FEP also increased. From the results of ESCA analysis, it was found that a significant amount of oxygen was introduced to the polymer surface by the plasma treatment. Peel strengths of a pressure sensitive adhesive bonded to PTFE and FEP increased approximately two-to threefold if the plasma treatment was used prior to bonding.
690. Hart, C.P., “Metallized films having an inherent copolyester coating,” U.S. Patent 4971863, Nov 1990.
A metallized polymeric film comprises a sulphonated copolyester intermediate adherent layer having an alkali metal content of not more than 0.005 gram atoms percent.
534. Menges, G., W. Michaeli, R. Ludwig, and K. Scholl, “Corona treatment of polypropylene films,” Kunststoffe, 80, 4-6, (Nov 1990).
386. Wetterman, R.P., “Electrical surface treatment of polyolefin packaging materials for improved adhesion and printing,” J. Packaging Technology, 6, 22-25, (Nov 1990).
291. Podhajny, R.M., “Comparing surface treatments,” Converting, 8, 46-52, (Nov 1990).
910. Wettermann, R.P., “Electrical surface treatment of medical plastics,” Medical Device & Diagnostic Industry, (Oct 1990).
540. Nishimura, H., T. Nakao, T. Uehara, and S. Yano, “Improvement of paperboard mechanical properties through corona-discharge treatment,” TAPPI J., 73, 275-276, (Oct 1990).
523. Mapleston, P., “Plasma technology progress improves options in surface treatment,” Modern Plastics Intl., 20, 74-79, (Oct 1990).
27. Blitshteyn, M., and R. Wetterman, “Surface treatment of polyolefins,” Modern Plastics, 67, 424, (Oct 1990).
1456. Kaplan, S.L., and P.W. Rose, “Plasma surface treatment of plastics to enhance adhesion,” in Adhesion '90, 4/1-4/7, Sep 1990.
528. Markgraf, D.A., and R. Edwards, “Corona treating solves sealing problems: eliminating the elusive hydrocarbon,” in 1990 Polymers, Laminations and Coatings Conference Proceedings, 915-925, TAPPI Press, Aug 1990.
223. Lindland, H.T., and C. Granville, “New developments in flame treating,” in Polymers, Laminations and Coatings Conference Proceedings 1999 (Book 2), TAPPI Press, Aug 1990.
79. DiBello, L., “An alternate technique for the measurement of surface tension of treated substrates,” in 1990 Polymers, Laminations and Coatings Conference Proceedings, 801-803, TAPPI Press, Aug 1990.
935. Cormia, R.D., “Use plasmas to re-engineer your advanced materials,” Research & Development, (Jul 1990).
416. Bassemir, R.W., and R. Krishnan, “Practical applications of surface energy measurements in flexography,” Flexo, 15, 31-40, (Jul 1990).
311. Savolainen, A., J. Kuusipalo, and H. Karhuketo, “Extrusion coating: corona after-treatment of LDPE coating,” TAPPI J., 73, 133-139, (Jul 1990).
2382. Yoshida, T., and K. Isono, “Surface treatment method,” U.S. Patent 4933123, Jun 1990.
A surface treatment method for improving the adhesiveness of a surface of a molded article made of a polyolefin resin with a printing ink, which entails irradiating the surface with an abundance of high-energy ultraviolet radiation from a high-output low-pressure mercury vapor lamp having an envelope made of synthetic quartz glass, and wherein the lamp has a wattage per unit lamp length of about 0.1-0.5 W/mm.
2381. Prohaska, G.W., R.J. Butler, and C.G. Nickoson, “Surface modification of fluoropolymers by reactive gas plasmas,” U.S. Patent 4933060, Jun 1990.
A method to modify the surface or fluoropolymer by a reactive gas plasma so that the surfaces have improved fluoropolymer to other substrate adhesive bond strength.
2280. Morra, M., E. Occhiello, and F. Garbassi, “Knowledge about polymer surfaces from contact angle measurements,” Advances in Colloid and Interface Science, 32, 79-116, (Jun 1990).
1829. Tagawa, M., K. Gotoh, A. Yasukawa, and M. Ikuta, “Estimation of surface free energies and Hamaker constants for fibrous solids by wetting force measurements,” Colloid and Polymer Science, 268, 589-594, (Jun 1990).
Wetting force at three-phase line was measured by the Wilhelmy technique using fibrous solids/liquid/liquid systems. Advancing and receding contact angles were calculated from the wetting forces during fiber immersion and emersion. The obtained results showed that contact angle hysteresis was due to the heterogeneity of the fiber surfaces. The dispersive and polar components of surface free energies of the fibers were determined from the advancing and receding contact angles, respectively. The Hamaker constants of the fibers were estimated from the dispersive components of their surface free energies.
123. Gengler, P., “The role of dielectrics in corona treating,” Converting, 8, 62-66, (Jun 1990).
2380. Dinter, P., L. Bothe, and J.D. Gribbin, “Process and device for surface pre-treatment of plastic by means of an electrical corona discharge,” U.S. Patent 4929319, May 1990.
For surface pre-treatment of a plastic article, such as a film sheet or the interior of a plastic molded article, by means of electrical corona-discharge, a device is provided having a generator 5 and a corona discharge device 11. The generator applied a high-frequency, high-voltage alternating current to the discharge electrodes 4 of the corona-discharge device 11. The grounded counterelectrode used is the metal core 2 of a roller 10 over whose peripheral coating 3 a film sheet 1 is transported. A housing 6 encompasses the electrodes 4 of the corona-discharge device 11 and is connected via a line 7 to an atomizer 8 in which a liquid is atomized to form an aerosol by means of a piezoelectrically operating ultrasonic vibration system or by two-component atomizer nozzles which operate at ultrasonic speed. A fan 9, the throughput rate of which can be regulated, is connected to the atomizer 8 and pushes the carrier gas, for example, air, for the aerosol through the atomizer into the corona-discharge device 11. Further corona-discharge devices can be present into which an aerosol of another liquid or only a reactive gas are fed.
2044. Kloubek, J., “Evaluation of surface free energy of polyacetylene from contact angles of liquids [Erratum],” Langmuir, 6, 1034, (May 1990).
2037. Briggs, D., H. Chan, M.J. Hearn, D.I. McBriar, and H.S. Munro, “The contact angle of poly(methyl methacrylate) cast against glass,” Langmuir, 6, 420-424, (Feb 1990).
Films of poly(methyl methacrylate) (PMMA) of both medium and high molecular weight have been prepared by casting onto clean glass. The difference in water contact angle of the surface originally in contact with glass. and air and the variation over time of this parameter have been studied. By use of the surface analytical techniques X-ray photoelectron spectroscopy (XPS) and, particularly, static secondary ion mass. spectroscopy (SSIMS), it has been shown that migration of low molecular weight impurities from the bulk of the film to the film/air interface is responsible for the contact angle behavior.
1826. van Oss, C.J., R.J. Good, and H.J. Busscher, “Estimation of the polar surface tension parameters of glycerol and formamide, for use in contact angle measurements on polar solids,” J. Dispersion Science and Technology, 11, 75-81, (Feb 1990).
By measuring contact angles with water, glycerol and formamide on a number of polar surfaces, an estimate could be made of the electron-acceptor (γ+ ) and the electron-donor (γ− ) parameters of glycerol (G) and formamide (F), relative to the parameters of. water (W), for which a reference value of γ+ W = γ− W = 25.5 mJ/m2 has been assumed. The values thus found are: γ+ G ≈ 3.92 mJ/m2 (which yields γ− G ≈ 57.4 mJ/m2) and γ+ F ≈2.28 mJ/m2 (which yields γ− F ≈ 39.6 mJ/m2).
343. Smith, R.E., “Testing the surface tension of substrates,” Converting, 8, 82, (Feb 1990).
<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | Next-->