Accudynetest logo

Products available online direct from the manufacturer

ACCU DYNE TEST ™ Bibliography

Provided as an information service by Diversified Enterprises.

total 2949 entries
showing result page 48 of 74, ordered by “Author”.

2248. Park, S.-J., H.-J. Sohn, S.-K. Hong, and G.-S. Shin, “Influence of atmospheric fluorine plasma treatment on thermal and dielectric properties of polyimide film,” J. Colloid and Interface Science, 332, 246-250, (Apr 2009).

2449. Park, S.-J., and H.-Y. Lee, “Effect of atmospheric-pressure plasma on adhesion characteristics of polyimide film,” J. Colloid and Interface Science, 285, 267-272, (May 2005).

1245. Park, S.-J., and J.-S. Jin, “Effect of corona discharge treatment on the dyeability of low-density polyethylene film,” J. Colloid and Interface Science, 236, 155-160, (Apr 2001).

1081. Park, Y.R., J.M. Song, J.S. Kim, and Y. Lee, “Effects of the number of acid groups on the hydrophilicity of the surface of PS-based ionomers,” in PMSE Preprints, American Chemical Society, Aug 2004.

1435. Park, Y.W., S. Tasaka, and N. Inagaki, “Surface modification of tetrafluoroethylene-hexafluoropropylene (FEP) copolymer by remote hydrogen, nitrogen, oxygen and argon plasmas,” J. Applied Polymer Science, 83, 1258-1267, (Feb 2002).

2553. Park, Y.W., and N. Inagaki, “Surface modification of poly(vinylidene fluoride) film by remote Ar, H2, and O2 plasmas,” Polymer, 44, 1569-1575, (Mar 2003).

2399. Parks, C.J., “Ozone treatment for composite paperboard/polymer package,” U.S. Patent 5705109, Jan 1998.

2303. Parks, G.J., “Method and apparatus for treating plastic materials,” U.S. Patent 2939956, Jun 1960.

1161. Parsegian, V.A., Van der Waals Forces, Cambridge University Press, Dec 2005.

1124. Pascu, M., D. Debarnot, S. Durand, and F. Poncin-Epaillard, “Surface modification of PVDF by microwave plasma treatment for electroless metallization,” in Plasma Processes and Polymers, d'Agostino, R., P. Favia, C. Oehr, and M.R. Wertheimer, eds., 157-176, Wiley-VCH, 2005.

1760. Pascual, M., R. Sanchis, L. Sanchez, D. Garcia, and R. Balart, “Surface modification of low density polyethylene (LDPE) film using corona discharge plasma for technological applications,” J. Adhesion Science and Technology, 22, 1425-1442, (2008).

769. Passerone, A., and R. Ricci, “High temperature tensiometry,” in Drops and Bubbles in Interfacial Research, Mobius, D., and R. Miller, eds., 475-524, Elsevier, Jun 1998.

2422. Pawde, S.M., and K. Deshmukh, “Surface characterization of air plasma treated poly vinylidene fluoride and poly methyl methacrylate films,” Polymer Engineering and Science, 49, 808-818, (2009).

2102. Paynter, R.W., “XPS studies of the modification of polystyrene and polyethyleneterephthalate surfaces by oxygen and nitrogen plasmas,” Surface and Interface Analysis, 26, 674-681, (Aug 1998).

2885. Pease, D.C., “The significance of the contact angle in relation to the solid surface,” J. Physical Chemisty, 49, 107-110, (1945).

2554. Penache, C., C. Gessner, T. Betker, V. Bartels, A. Hollaender, and C.-P. Klages, “Plasma printing: Patterned surface functionalisation and coating at atmospheric pressure,” IEE Proceedings: Nanobiotechnology, 151, 139-144, (Aug 2004).

284. Penn, L.S., and B. Miller, “Advancing, receding, and 'equilibrium' contact angles,” J. Colloid and Interface Science, 77, 574-576, (1980).

1809. Penn, L.S., and E.R. Bowler, “A new approach to surface energy characterization for adhesive performance prediction,” Surface and Interface Analysis, 3, 161-164, (Aug 1981).

2281. Penn., L.S., and B. Miller, “A study of the primary causes of contact angle hysteresis on some polymeric solids,” J. Colloid and Interface Science, 78, 238-241, (Nov 1980).

285. Pennance, J.R., “The role of surface tension in printing on plastic films,” ScreenPrinting, 78, 64-69, (Jul 1988).

926. Pennance, J.R., “Printing on plastic films: problems with surface tension,” Screen Printing, 73, 108-109, (Jun 1983).

286. Pennings, J.F.M., and B. Bosman, “Relaxation of the surface energy of solid polymers,” Colloid and Polymer Science, 257, 720-724, (1979).

885. Perz, S.V., C.S. McMillan, and M.J. Owen, “Wettability of fluorosilicone surfaces,” in Fluorinated Surfaces, Coatings, and Film (ACS Symposium Series 787), Castner, D.G., and D.W. Grainger, eds., 112-128, American Chemical Society, Mar 2000.

1808. Petke, F.D., and B.R. Ray, “Temperature dependence of contact angles of liquids on polymeric solids,” J. Colloid and Interface Science, 31, 216-227, (Oct 1969).

680. Petri, D.F.S., E.M.A. Pereira, and A.M. Carmona-Ribiero, “Wettability and adhesion of bilayer-forming lipids onto polymeric films,” in Contact Angle, Wettability and Adhesion, Vol. 2, Mittal, K.L., ed., 535-548, VSP, Sep 2002.

1535. Petrie, E.M., “Surfaces and surface preparation,” in Handbook of Adhesives and Sealants, 2nd Ed., 227-275, McGraw-Hill, Jan 2007.

2429. Petrie, E.M., “Determining the critical surface tension of solid substrates,” http://www.specialchem4adhesives.com/home/editorial.aspx?id=1785, Jan 2007.

882. Petrie, S.P., and E.F. Bardsley, “Epoxy adhesives: Effect of plasma treatment and surface roughness on epoxy to polyethylene bond strength,” in ANTEC 2001 Conference Proceedings, 1175-1178, Society of Plastics Engineers, May 2001.

287. Phillips, M.C., and A.C. Riddiford, “Dynamic contact angles, II. Velocity and relaxation effects for various liquids,” J. Colloid and Interface Science, 41, 77-85, (1972).

2001. Phillips, R.W., and R.H. Dettre, “Application of ESCA and contact angle measurements to studies of surface activity in a fluoropolymer mixture,” J. Colloid and Interface Science, 56, 251-254, (Aug 1976).

2272. Pichal, J., J. Hladik, and P. Spatenka, “Atmospheric-air plasma surface modification of polyethylene powder,” Plasma Processes and Polymers, 6, 148-153, (Feb 2009).

1246. Pijpers, A.P., and R.J. Meier, “Adhesion behaviour of polyproylenes after flame treatment determined by XPS (ESCA) spectral analysis,” J. Electron Spectroscopy and Related Phenomena, 121, 299-313, (Dec 2001).

1191. Pillar Technologies, “Surface treatment: corona, flame or plasma (advertorial),” Label & Narrow Web Industry, 9, 113, (Jul 2004).

2752. Ping-yi Tsai, P., “Mechanism of corona electrostatic charging of nonwoven webs,” in 1994 Nonwovens Conference Proceedings, TAPPI Press, 1994.

544. Pireaux, J.J., P. Bertrand, and J.L. Bredas, eds., Polymer - Solid Interfaces, Institute of Physics, 1991.

1416. Pirzada, S.A., A. Yializis, W. Decker, and R.E. Ellwanger, “Plasma treatment of polymer films,” in 42nd Annual Technical Conference Proceedings, 301+, Society of Vacuum Coaters, Apr 1999.

739. Pisanova, E.V., “Microbial treatment of polymer surfaces to improve adhesion,” in Adhesion Promotion Techniques: Technological Applications, Mittal, K.L., and A. Pizzi, eds., 323-346, Marcel Dekker, Feb 1999.

1818. Pittman, A.G., D.L. Sharp, and B.A. Ludwig, “Polymers derived from fluoroketones II: Wetting properties of fluoroalkyl acrylates and methacrylates,” J. Polymer Science, Part A-1: Polymer Chemistry, 6, 1729-1740, (1968).

1156. Pittman, A.G., and B.A. Ludwig, “Effect of polymer crystallinity on the wetting properties of certain fluoroalkyl acrylates,” J. Polymer Science Part A-1: Polymer Chemistry, 7, 3053-3066, (Nov 1969).

2842. Plantier, M., “Corona or plasma? Which surface treatment technology is best for my application?,” PFFC, 26, 12-14, (Feb 2021).

 

<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | Next-->