Accudynetest logo

Products available online direct from the manufacturer

ACCU DYNE TEST ™ Bibliography

Provided as an information service by Diversified Enterprises.

3057 results returned
showing result page 43 of 77, ordered by
 

1941. Kinning, D.J., “Surface and interfacial structure of release coatings for pressure sensitive adhesives, I: Polyvinyl N-alkyl carbamates,” J. Adhesion, 60, 249-274, (Jan 1997).

Such polymers are commonly used as release coatings for pressure sensitive adhesive tapes. In this paper the bulk, surface, and interfacial structures of polyvinyl N-alkyl carbamates having either decyl or octadecyl side chains are examined. The bulk structures and thermal transitions were characterized using X-ray scattering and differential scanning calorimetry. Dynamic mechanical thermal analysis was used to investigate thermal transitions and rheology (i.e., segmental mobility) of the polyvinyl N-alkyl carbamates. The surface energies of polyvinyl N-alkyl carbamate coatings were determined using contact angle methods, while X-ray photoelectron spectroscopy and static secondary ion mass spectrometry were employed to characterize the near-surface compositional profiles of the coatings. The peel force provided by the polyvinyl N-alkyl carbamate coatings, as a function of aging time and temperature, was measured for a tape having an acrylic acid containing alkyl acrylate based pressure sensitive adhesive. The changes in peel force with aging time and temperature were related to the ability to maintain a stable interfacial structure between the PSA and polyvinyl N-alkyl carbamate coatings. Changes in the interfacial composition upon aging were characterized by comparing the surface compositions of the PSA and polyvinyl N-alkyl carbamate coatings initially, prior to contact, as well as after aging and peeling them apart. The increase in peel force upon aging can be attributed, in large part, to a restructuring at the PSA/polyvinyl alkyl carbamate interface. Energetically favorable acid-base interactions between the basic urethane and acetate groups in the polyvinyl alkyl carbamates and the acrylic acid groups in the PSA provide a driving force for the restructuring. If the segmental mobility within the polyvinyl alkyl carbamate is sufficient, restructuring can occur, leading to increased concentrations of these groups at the PSA/polyvinyl alkyl carbamate interface, resulting in higher attractive forces and greater adhesion. The propensity for the polyvinyl N-alkyl carbamate coatings to restructure upon contact with a polar medium was also characterized by monitoring the receding contact angle of water, as a function of water contact time and temperature. A good correlation is seen between the ability of the polyvinyl alkyl carbamate coatings to provide a low peel force for the acrylate PSA tape and the ability of the coatings to maintain a high water receding contact angle.

1848. Cho, J.-S., W.-K. Choi, H.-J. Jung, and S.-K. Koh, “Effect of oxygen gas on polycarbonate surface in keV energy Ar+ ion irradiation,” J. Materials Research, 12, 277-282, (Jan 1997).

Ar+1 ion irradiation on a polycarbonate (PC) surface was carried out in an oxygen environment in order to investigate the effects of surface chemical reaction, surface morphology, and surface energy on wettability of PC. Doses of Ar+ ion were changed from 5 × 1014 to 5 × 1016 at 1 keV ion beam energy by a broad ion beam source. Contact angle of PC was not reduced much by Ar+ ion irradiation without flowing oxygen gas, but decreased significantly as Ar+ ion was irradiated with flowing 4 sccm (ml/min) oxygen gas and showed a minimum of 12° to water and 5° to formamide. A newly formed polar group was observed on the modified PC surface by Ar+ ion irradiation with flowing oxygen gas, and it increased the PC surface energy. On the basis of x-ray photoelectron spectroscopy analysis, the formed polar group was identified as a hydrophilic CDouble BondO bond (carbonyl group). In atomic force microscopy (AFM) study, the root mean square of surface roughness was changed from 14 Å to 22–27 Å by Ar+ ion irradiation without flowing oxygen gas and 26–30 Å by Ar+ ion irradiation with flowing 4 sccm oxygen gas. It was found that wettability of the modified PC surface was not greatly dependent on the surface morphology, but on an amount of hydrophilic group formed on the surface in the ion beam process.

727. Tricot, Y.-M., “Surfactants: static and dynamic surface tension,” in Liquid Film Coating: Scientific Principles and Their Technological Implications, Kistler, S.F., and P.M. Schweizer, eds., 99-136, Chapman & Hall, Jan 1997.

Surfactants — an acronym for surface-active agents — are versatile and ubiquitous chemicals. They are found in industrial areas related to detergents (Hancock 1984; Thayer 1993), pharmaceuticals (Tadros 1984; Attwood and Florence 1983), cosmetics (Ainsworth 1993), paints (Nylen and Sunderland 1965), pesticides (Wada et al. 1983; Tann, Berger and Berger 1992) and oil recovery (Neustalder 1984), to mention a few. Mother Nature used them, long before humans, as major building blocks of biological membranes, taking advantage of the so-called hydrophobic effect (Tanford 1980). This chapter focuses on applications of surfactants in liquid film coating processes, and in particular in coatings involving aqueous solutions, as encountered in the photographic industry.

726. Blake, T.D., and K.J. Ruschak, “Wetting: static and dynamic contact lines,” in Liquid Film Coating: Scientific Principles and Their Technological Implications, Kistler, S.F., and P.M. Schweizer, eds., 63-98, Chapman & Hall, Jan 1997.

Wetting is basic to coating. Initially air contacts the solid, and during coating the liquid displaces the air from the moving solid surface so that none is visible in the coated film. Thus, coating is a process of dynamic wetting. For uniform coating, the wetting line must remain straight and advance steadily. At sufficiently high speeds, however, the wetting line becomes segmented and unsteady as a thin air film forms between the solid and liquid. The air film disrupts the uniformity of the coated film, and often air bubbles appear in the coating. Dynamic wetting failure limits coating speed.

2778. LaPorte, R.J., Hydrophilic Polymer Coatings for Medical Devices, CRC Press, 1997.

2580. Kemppi, A., “Studies on the adhesion between paper and low density polyethylene (PhD thesis),” Abo Akademi, 1997.

2127. Finson, E., and S.L. Kaplan, “Surface treatment,” in The Wiley Encyclopedia of Packaging Technology, 2nd Ed., Brody, A.L., and K.S. Marsh, eds., 867-874, Wiley-Interscience, 1997.

2075. W. Keiko, A. Shin'ya, M. Shuichi, T. Kiyoshi, and F. Akio, “Application of flame treatment for degreasing aluminum foil,” Keikinzoku Gakkai Taikai Koen Gaiyo, 93, 263-264, (1997).

1870. Le, Q.T., J.J. Pireaux, and R. Caudano, “XPS study of the PET film surface modified by CO2 plasma: Effects of the plasma parameters and ageing,” J. Adhesion Science and Technology, 11, 735-751, (1997).

Chemical modification of the PET surface by carbon dioxide plasma treatment has been studied using X-ray photoelectron spectroscopy (XPS). The plasma process results mainly in the formation of carbonyl, carboxyl, and carbonate groups at the PET surface. Under rather mild treatment conditions (low plasma power combined with a short treatment time), the formation of CSingle BondO bonds was found to be dominant, whereas the formation of highly oxidized carbon or double-bonded oxygen-containing groups required a high plasma power or a relatively long treatment time. The treatments performed under excessive conditions frequently led to degradation at the polymer surface. Angle-resolved XPS analyses performed on a freshly modified PET film showed a slight decrease in the O/C atomic ratio when the take-off angle (TOA) increased, indicating a relatively uniform distribution of oxygen within the sampling depth (estimated to be about 8 nm at 80° TOA). The chemical composition of the plasma-modified surface was found to be relatively stable on extended storage in air under ambient conditions. The decrease in oxygen-containing groups at the carbon dioxide-plasma-treated PET surface upon ageing is mainly ascribed to the surface rearrangement of macromolecular segments, the loss of oxygen-containing moieties introduced by the plasma treatment, and the possible migration of non-affected PET chains from the bulk to the surface region.

1869. Ghosh, I., J. Konar, and A.K. Bhowmick, “Surface properties of chemically modified polyimide films,” J. Adhesion Science and Technology, 11, 877-893, (1997).

Surface modification of Kapton polyimide film (325 nm thick) by means of chromic acid and perchloric acid at different times and temperatures has been carried out. The contact angle of water decreased from 82 to 55° and the surface energy increased accordingly from 26 to 45 mJ/m2 with times of etching by chromic acid up to 45 min at 33°C. Etching at higher temperatures increased the surface energy. Chromic acid was more effective than perchloric acid. IR and XPS studies indicated multiple bonding and generation of poler groups on the surface. The peak at 1778 cm-1 due to the imide group decreased on acid etching. The O/C ratio increased and the N/C ratio decreased. The peel strength of the joint polyimide film/copper film/epoxy adhesive/aluminium sheet increased about two-fold on modification of the polyimide (PI) film at 33°C for 45 min, although the changes were marginal for the PI film/silicone rubber/PI film joint. The peel strength is a function of the time and temperature of etching.

1868. Kuusipalo, J., and A. Savolainen, “Adhesion phenomena in (co) extrusion coating of paper and paperboard,” J. Adhesion Science and Technology, 11, 1119-1135, (1997).

In extrusion coating, the inadequate adhesion between the polymer coating and the fiber-based paper substrate (paper and paperboard) is both a common and a constant problem. The lack of adhesion between the printing ink, or glue, and the polymer coating is another area where adhesion improvement is needed. The common means of improving adhesion are flame, corona, and ozone treatments. A modem extrusion coating line is equipped with both a pretreatment and a post-treatment unit. From the work presented here, the following observations were made. The higher the applied corona power and the thicker the coating, the higher the surface energy and polarity of the low density polyethylene (PE-LD) surface. When a high corona power was applied to the coating, only the polar component of the surface energy was increased. The surface energy decreased sharply as a function of aging, but remained more or less constant after about 2 weeks' storage time. The contact angles of water on paper correlated well with the oxygen contents (determined by ESCA) and with the applied corona power. The polarities of both paper and paperboard increased as a function of the applied corona power. Corona pretreatment of paper and paperboard improved their adhesion to PE-LD remarkably. The adhesion of the polypropylene (PP) homopolymer is based more on mechanical interlocking than on interfacial bonding. On the other hand, the oxidizing pretreatments of the paper substrates significantly promoted the adhesion of the PP copolymer.

1867. Lin, D.G., “Layer-by-layer modification of thermoplastic coatings to improve adhesion,” J. Adhesion Science and Technology, 11, 1563-1575, (1997).

One of the causes leading to low bond strength between a coating and a substrate (adhesion strength) - if coatings are formed at elevated temperatures in air - is assumed to be a weak boundary layer generated in the region of adhesional contact: the boundary layer consisting mostly of low-molecular-weight products resulting from thermal oxidative degradation of the polymer. It has been verified experimentally that products of oxidation diffuse from the coating surface layer to the contact area. The oxidation process is supposed to be localized within that surface layer. A method has been devised to determine the thickness of the layer, and model experiments have been conducted to show that low-molecular-weight products of oxidation deteriorate the adhesion strength. Ways have been found to increase the adhesion strength of coatings by means of modification of the coating applied in a layer-by-layer manner. The idea is to introduce separately such modifiers as antioxidants, inorganic fillers possessing high adsorption capacities, and crosslinking agents into the coating surface layer. This method of coating modification allows one to eliminate the negative effects of the low-molecular-weight products generated in the surface layers during the formation.

1287. Ha, S.W., R. Hauert, K.-H. Ernst, and E. Wintermantel, “Surface analysis of chemically-etched and plasma-treated PEEK for biomedical applications,” Surface and Coatings Technology, 96, 293-299, (1997).

Surface modifications of polyetheretherketone (PEEK) made by chemical etching or oxygen plasma treatment were examined in this study. Chemical etching caused surface topography to become irregular with higher roughness values Ra and Rq. Oxygen plasma treatment also affected surface topography, unveiling the spherulitic structure of PEEK. Ra, Rq and surface area significantly increased after plasma treatment; topographical modifications were, nonetheless, moderate. Wetting angle measurements and surface energy calculations revealed an increase of wettability and surface polarity due to both treatments. XPS measurements showed an increase of surface oxygen concentration after both treatments. An O:C ratio of 3.10 for the plasma-treated PEEK surface and 4.41 for the chemically-etched surface were determined. The results indicate that surface activation by oxygen plasma treatment for subsequent coating processes in supersaturated physiological solutions to manufacture PEEK for biomedical appiications is preferable over the chemical etching treatment.

1281. Schleising, E., “Corona discharge treatment,” FlexoTech, 13, 26, (1997).

1238. Morrow, R., “The theory of positive glow corona,” J. Physics D: Applied Physics, 30, 3099-3114, (1997).

A theory for the current and light pulses of positive glow corona from a point in air is presented; this phenomenon was first observed as an apparently continuous glow by Michael Faraday. Results are obtained, in concentric sphere geometry, for air at atmospheric pressure, by solving the continuity equations for electrons, positive ions, negative ions and metastable oxygen molecules, coupled with Poisson's equation. A series of ‘saw-toothed’ current pulses of period about is predicted with a DC current level. Accompanying the current peaks are discrete pulses of light 30 ns wide. Successive ‘shells’ of positive ions, from successive current pulses, carry 96% of the mean current. The mean current - voltage relationship has the classic square-law form. The seed electrons required for successive pulses are detached from negative ions by metastable oxygen molecules. Photo-ionization is crucial for the discharge at the anode and for the formation of negative ions throughout the gap. The pulse frequency varies with applied voltage and is found to be approximately proportional to the positive-ion mobility. The surface electric field at the central electrode remains close to Peek's onset field. The origin of onset streamers is explained and sub-microsecond voltage pulses are found to produce streamers. The results for concentric-cylinder electrodes are described briefly.

1045. Walzak, M.J., J.M. Hill, C. Huctwith, M.L Wagter, and D.H. Hunter, “AFM and FTIR-ATR in study of UV/ozone modified surfaces of polyethyleneterephthalate and polypropylene,” in 20th Annual Anniversary Meeting, 505-508, Adhesion Society, 1997.

1036. Nihlstrand, A., T. Hjertberg, and K. Johansson, “Plasma treatment of polyolefins - influence of material composition, 1: Bulk and surface characterization,” Polymer, 38, 3581-3589, (1997).

Injection-moulded plates of ten polypropylene (PP) and thermoplastic polyolefin (TPO) materials with varying material composition (different type of rubber, varying degree of ethylene etc.) were characterized before and after oxygen plasma treatments. Untreated materials were studied by means of differential scanning calorimetry (d.s.c.), size exclusion chromatography (s.e.c.), Fourier-transform infrared spectroscopy (FTi.r.), attenuated total reflectance (ATR) and transmission measurements, and the effect of plasma treatment conditions was followed by X-ray photoelectron spectroscopy (X.p.s.) and contact angle measurements. S.e.c. analysis revealed only minor variations among the materials, while the d.s.c. and FTi.r. experiments confirmed that the differences were to be expected as a result of the variation in material composition. The FTi.r.-ATR results showed that all samples had a gradient in material composition. The materials were generally more rich in PP in the topmost ∼ 200 nm than in the first ∼800 nm, and a lesser extent of ethylene modification and/or rubber was observed in the topmost ∼ 200 nm. It was also shown that the degree of surface crystallinity was normally greater at ∼ 800 nm than at ∼ 200 nm, and that a higher mould temperature led to a higher degree of surface crystallinity. The water contact angles and the atomic composition showed that the materials were more oxidized after plasma treatment at high power-to-gas pressure (P/G) ratios than at low ratios. Moreover, the dependence on material composition was weak for samples that were plasma-treated at low P/G ratios whereas the materials that were least ethylene-modified were less oxidized than the others at high P/G ratios. © 1997 Elsevier Science Ltd.

1035. Sako, N., T. Matsuoka, and K. Sakaguchi, “Effect of interface on fracture mechanism of GF/PP composites using O2 plasma treatment,” Composite Interfaces, 4, 401-415, (1997).

Polypropylene sheets are treated with oxygen plasma for the interfacial control of GF/PP composites. The interfacial strength between glass fabric and PP resin is estimated by the T-peel test method. The evaluation of T-peel test data is done by both the T-peel strength method and the T-peel amplitude method. The T-peel strength value and T-peel amplitude value were respectively increased to about 50% and 120% compared with each value of non-treated specimens. The T-peel strength relates to the surface energy on the PP-sheet and the T-peel amplitude relates to the fracture pattern of the delamination surface. From SEM observations on the delamination surface, many voids in the space enclosed with fiber bundles are observed in the case of non-treated specimen and no void and fiber bridging are observed on the plasma treated specimens. It is found that interfacial properties between fiber and resin are improved by this plasma process.

1032. Bodio, F., N. Compiegne, L. Kohler, J.J. Pireauz, and R. Cuadano, “Tailoring the SiOx-polypropylene interface through plasma pretreatment: A test case for the acid-base concept,” in 20th Annual Anniversary Meeting, 41-44, Adhesion Society, 1997.

1031. Weitzsacker, C.L., N. Dontula, A. Centeck, M.J. Ricj, and L.T. Drzal, “Utilising x-ray photoelectron spectroscopy to investigate modified polymer surfaces,” in 20th Annual Anniversary Meeting, 641-643, Adhesion Society, 1997.

1029. Friedrich, J., “Plasma treatment of polymers,” Adhasion Kleben & Dichten, 41, 28-33, (1997).

1022. Sullivan, N., M.C. Branch, M. Ulsh, and M. Strobel, “Flame treatment of polyolefin materials: Characterisation of gas phase phenomena,” in 20th Annual Anniversary Meeting Conference Proceedings, 101-103, Adhesion Society, 1997.

984. Nihlstrand, A., T. Hjertberg, and K. Johansson, “Adhesion properties of oxygen plasma-treated polypropylene-based copolymers,” Polymer, 38, 1557-1563, (1997).

Injection-moulded plates of four polypropylene-based copolymers with ethylene or an unconjugated diene as the comonomer were subjected to oxygen plasma treatments. The main objective was to investigate how the degree of wettability and the adhesion properties were influenced by the type and amount of comonomer and by selected plasma parameters. The change in wettability was monitored by static water contact angle measurements and the adhesion between plasma-treated polypropylene plates and a two-component polyurethane lacquer was evaluated by a 90° peel test. No significant difference in the degree of wettability depending on material composition or treatment conditions could be observed. However, the lacquer adhesion was shown to be a function of both material composition and discharge power, while the influence of gas pressure was less clear. For all procssing conditions used, the lacquer adhesion was distinctly improved as the diene content was increased. An increasing extent of crosslinking reactions combined with a reduction in the number of main chain scissions are proposed to account for the observed results.

983. Xiao, G.Z., “Effects of solvents on the surface properties of oxygen plasma-treated polyethylene and polypropylene films,” J. Adhesion Science and Technology, 11, 655-663, (1997).

The effects of solvents on the surface properties of oxygen plasma-treated polyethylene and polypropylene films have been studied by ESCA, contact angle measurement, and adhesion testing. The results show that oxygen plasma treatment produces some low molecular weight materials (LMWM) on the treated surfaces, which can be removed, to some extent, by solvents. It seems that the LMWM has different solubilities in different solvents. Among the solvents (water, acetone, and 2-propanol) used, acetone has the most significant effect. The removal of LMWM considerably reduces the wettability of the treated materials, but does not impair the adhesion increased by the plasma treatment.

982. Nihlstrand, A., T. Hjertberg, and K. Johansson, “Plasma treatment of polyolefins - influence of material composition, 2: Lacquer adhesion and locus of failure,” Polymer, 38, 3591-3599, (1997).

The adhesion properties achieved after oxygen plasma treatments of ten polypropylene (PP) and thermoplastic polyolefin (TPO) materials of different compositions were studied. It is shown that the adhesion between a polyurethane (PUR) lacquer and plasma-treated materials was strongly influenced by the plasma treatment conditions and the chemical composition of the materials. Generally, a low power-to-gas pressure (P/G) ratio during the plasma treatment and a high ethylene content, preferably in the form of blocks, and/or the presence of double bonds in the matrix, are favourable for adhesion properties. Moreover, the TPOs were less sensitive towards the plasma treatment conditions than the corresponding PPs. The properties and the type of rubber may also be important for the adhesion properties. Furthermore, it was shown by X-ray photoelectron spectroscopy (X.p.s.) and Fourier transform infrared (FTi.r.) spectroscopy (using the attenuated total reflectance (ATR) technique) that all failures—even the apparently interfacial failures—were located in the substrate, below the oxidized surface layer, the only difference being the depth of failure. The fracture surfaces of samples showing low peel forces generally had a more PP-like composition than fracture surfaces that were clearly cohesive in the substrate. This observation offers evidence that the lacquer adhesion is determined by the extent to which chain scission reactions occur in the near-surface region of the substrate during the plasma treatment. © 1997 Elsevier Science Ltd.

981. Choi, D.M., C.K. Park, K. Cho, and C.E. Park, “Adhesion improvement of epoxy resin/PE joints by plasma treatment of PE,” Polymer, 38, 6243-6249, (1997).

Low density polyethylene (LDPE) and high density polyethylene (HDPE) were plasma-treated with N2 and O2 plasma. The wettability and polar component of surface free energy of plasma-treated polyethylene were investigated by contact angle measurement. The concentration of functional groups formed by plasma treatment such as hydroxyl and carbonyl groups was measured using attenuated total reflection Fourier transform infrared spectroscopy (ATR FTi.r.). The concentration of polar functional group increased rapidly with 5–10s of plasma treating time and then very slowly after that. The adhesion strength of epoxy resin/plasma-treated polyethylene joints was examined by a 90° peel test. The increase of the adhesion strength was similar to that of concentration of polar functional groups. The higher adhesion strength of epoxy resin/plasma-treated HDPE joints was observed than that of epoxy resin/plasma-treated LDPE joints since HDPE deformed more during the peel tests and had more polar functional groups on the surface.

974. Saito, D., “Surface modification by corona discharge,” Nippon Gomu Kyokaishi, 70, 333-339, (1997).

908. no author cited, “Surface tension of inks and paper; project 2695-26,” Chesapeake Packaging Co., 1997.

550. Rawls, A.S., et al, “Evaluation of surface concentration of additives in LLDPE films,” in ANTEC 97, Society of Plastics Engineers, 1997.

530. Matuana, L.M., J.J. Balatinecz, and C.B. Park, “Evaluation of adhesion between PVC and surface-treated wood veneer laminates,” in ANTEC 97, Society of Plastics Engineers, 1997.

453. Dontula, N., C.L. Weitzsacker, and L.T. Drzal, “Surface activation of polymers using ultraviolet light activation,” in ANTEC 97, Society of Plastics Engineers, 1997.

2397. Grace, J.M., J. Chen, L.J. Gerenser, and D.A. Glocker, “Use of glow discharge treatment to promote adhesion of aqueous coatings to substrate,” U.S. Patent 5582921, Dec 1996.

The present invention is a polyester film base which has a surface approximately 5 nm thick. The surface of the film base has been altered to include about 6 to 15 atomic percent nitrogen in the form of imines, secondary amines and primary amines in the ratio of about 1:1:2. The invention also includes a film base whose surface includes oxygen in the form of hydroxyl, ether, epoxy, carbonyl or carboxyl groups wherein the oxygen is about 4 to 10 atomic percent above the original surface content of the base. The polyester film base can be either polyethylene terephthalate or polyethylene naphthalate.

2078. Koh, S.-K., W.-K. Choi, J.-S. Cho, S.-K. Song, Y.-M. Kim, and H.-J. Jung, “Ar+ ion irradiation in oxygen environment for improving wettability of polymethylmethacrylate,” J. Materials Research, 11, 2933-2939, (Nov 1996).

Ion irradiation with various oxygen flow rates has been carried out to improve the wettability of polymethylmethacrylate (PMMA) to water and to enhance the adhesion between Al and the polymer. Ar+ ion and oxygen ion were irradiated on the polymer, and amounts of ions were changed from 5 × 1014 Ar+/cm2 to 5 × 1016 Ar+/cm2 by a broad ion beam source. Oxygen gas from 0 ml/min to 7 ml/min was flowed near the polymer surface during the ion irradiation, and the energy of ions was changed from 500 eV to 1500 eV. The wetting angle was reduced from 68° to 49° with the Ar+ ion irradiation only at 1 keV energy, to 43° with the oxygen ion irradiation, and dropped to 8° with Ar+ ion irradiation with flowing 4 ml/min oxygen gas near the polymer surface. Changes of wetting angle with oxygen gas and Ar+ ion irradiation were explained by a two-step chemical reaction among polymer matrix, energetic ions, and oxygen gas. The effects of Ar+ ion and oxygen ion irradiation were explained by considering formation of hydrophilic groups due to a reaction between irradiated polymer chain by energetic ion irradiation and blown oxygen gas, and enhanced adhesion between Al and PMMA was explained by the formation of electron acceptor groups in polymer and electron donors in metal, and by the chemical reaction in the interface between irradiated polymer surface and deposited metal.

1205. Comyn, J., L. Mascia, X. G., and B.M. Parker, “Corona-discharge treatment of polyetheretherketone (PEEK) for adhesive bonding,” Intl. J. Adhesion and Adhesives, 16, 301-304, (Nov 1996).

1441. Teltech Resources Network Corp., “Low surface energy substrates present bonding challenges,” Adhesives Age, 39, 38-44, (Oct 1996).

1047. DiGiacomo, J.D., and J. Pezzuto, “Troubleshooting flame plasma surface treating systems-Q&A approach,” in 1996 Polymers, Laminations and Coatings Conference Proceedings, 101-104, TAPPI Press, Oct 1996.

986. Kang, E.T., K.L. Tan, K. Kato, Y. Uyama, and Y. Ikada, “Surface modification and functionalisation of polytetrafluoroethylene films,” Macromolecules, 29, 6872-6879, (Oct 1996).

Argon plasma-pretreated polytetrafluoroethylene (PTFE) films were subjected to further surface modification by near-UV light-induced graft copolymerization with acrylic acid (AAc), sodium salt of styrenesulfonic acid (NaSS), and N,N-dimethylacrylamide (DMAA). The surface compositions and microstructures of the modified films were characterized by angle-resolved X-ray photoelectron spectroscopy (XPS). A stratified surface microstructure with a significantly higher substrate-to-graft chain ratio in the top surface layer than in the subsurface layer was always obtained for PTFE surface with a substantial amount of the hydrophilic graft. The stratified surface microstructure was consistent with the observed hysteresis in advancing and receding water contact angles. The graft yield increased with Ar plasma pretreatment time and monomer concentration. Covalent immobilization of trypsin on the AAc polymer-grafted PTFE films was facilitated by water-soluble carbodiimide (WSC). The effective enzyme activities increased initially with increasing surface concentration of the grafted AAc polymer but became saturated at a moderate AAc polymer concentration. The immobilized enzyme could still retain close to 30% of its original activity. Solution-coating of the polymeric acid-modified PTFE films with the emeraldine (EM) base of polyaniline readily resulted in an interfacial charge transfer interaction and a semiconductive PTFE surface.

302. Ray, A., “Is in-line corona treating necessary?,” Flexo, 21, 56-58, (Oct 1996).

36. Boyle, E., “Taking the measure of surface treatment is a learning process,” Paper Film & Foil Converter, 70, 52-54, (Oct 1996).

5. Bentley, D.J., “How to measure treatment (or, is this trip necessary?),” Paper Film & Foil Converter, 70, 24, (Oct 1996).

 

<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | Next-->