Accudynetest logo

Products available online direct from the manufacturer

ACCU DYNE TEST ™ Bibliography

Provided as an information service by Diversified Enterprises.

total 2872 entries
showing result page 34 of 72, ordered by “Publisher”.

1849. Clark, D.T., and A. Dilks, “ESCA applied to polymers, XXIII: RF glow discharge modification of polymers in pure oxygen and helium-oxygen mixtures,” J. Polymer Science, Part A: Polymer Chemistry, 17, 957-976, (1979).

155. Hansen, R.H., and H. Schonhorn, “A new technique for preparing low surface energy polymers for adhesive bonding,” J. Polymer Science, Polymer Letters Edition, 4, 203-209, (1966).

2428. Courval, G.J., D.G. Gray, and D.A.I. Goring, “Chemical modification of polyethylene surfaces in a nitrogen corona,” J. Polymer Science: Polymer Letters Edition, 14, 231-235, (Apr 1976).

1692. Strom, G., “The importance of surface energetics and dynamic wetting in offset printing,” J. Pulp and Paper Science, 19, J79, (1993).

2783. Aspler, J.S., S. Davis, and M.B. Lyne, “The surface chemistry of paper in relation to dynamic wetting and sorption of water and lithographic fountain soutions,” J. Pulp and Paper Science, 13, 355-360, (1987).

1341. Padday, J.F., “Apparatus for measuring the spreading coefficient of a liquid, on a solid surface,” J. Scientific Instrumentation, 36, (1959).

2737. Mukhopadhyay, S., and R. Fangueiro, “Physical modification of natural fibers and thermoplastic films for composites - a review,” J. Thermoplastic Composite Materials, 22, 135-162, (Mar 2009).

31. Bodo, P., and J.-E. Sundgren, “Adhesion of evaporated titanium to polyethylene: effects of ion bombardment pretreatment,” J. Vacuum Science and Technology, A2, 1498-1502, (1984).

234. Matienzo, L.J., F. Emmi, F.D. Egitto, et al, “Surface composition and distribution of fluorine in plasma-fluorinated polyimide,” J. Vacuum Science and Technology, A6, 950-953, (1988).

466. Grant, J.L., D.S. Dunn, and D.J. McClure, “Argon and oxygen sputter etching of polystyrene, polypropylene, and poly(ethylene terephthalate) thin films,” J. Vacuum Science and Technology, A6, 2213-2220, (1988).

567. Sengupta, K.S., and H.K. Birnbaum, “Structural and chemical effects of low-energy ion bombardment of PMMA-ODA surfaces,” J. Vacuum Science and Technology, A9, 2928-2935, (1991).

1309. Callen, B.W., M.L. Ridge, S. Lahooti, A.W. Neumann, and R.N.S. Sodhi, “Remote plasma and UV-ozone modification of polystyrene,” J. Vacuum Science and Technology, A13, 2023-2029, (1995).

1736. Kumagai, H., H. Denbo, N. Fujii, and T. Kobayashi, “Poly(ethylene terephthalate) decomposition process in oxygen plasma: Emission spectroscopic and surface analysis for oxygen-plasma reaction,” J. Vacuum Science and Technology, A22, 1-7, (2004).

2070. Hozumi, A., N. Shirahata, Y. Nakanishi, S. Asakura, and A. Fuwa, “Wettability control of a polymer surface through 126 nm vacuum ultraviolet light irradiation,” J. Vacuum Science and Technology, A22, 1309-1314, (Jul 2004).

2084. Lee, Y., S. Han, J.-H. Lee, J.-H. Yoon, H.E. Lim, and K.-J. Kim, “Surface studies of plasma source ion implantation treated polystyrene,” J. Vacuum Science and Technology, A16, 1710-1715, (May 1998).

2022. Matienzo, L.J., J.A. Zimmerman, and F.D. Egitto, “Surface modification of fluoropolymers with vacuum ultraviolet irradiation,” J. Vacuum Science and Technology A, 12, 2662-2671, (Sep 1994).

2031. Lim, H., Y. Lee, S. Han, and J. Cho, “Surface treatment and characterization of PMMA, PHEMA, and PHPMA,” J. Vacuum Science and Technology A, 19, 1490-1496, (Jul 2001).

1116. Schoff, C.K., “Coatings clinic: Wetting and wettability,” JCT CoatingsTech, 1, 108, (Oct 2004).

1167. Schoff, C.K., “Coatings clinic: Surface tension and surface energy,” JCT CoatingsTech, 3, 72, (Feb 2006).

1566. Williams, K., and B. Bauman, “New technology for enhancing wood-plastic composites,” JCT CoatingsTech, 4, 52-57, (Aug 2007).

2154. Schoff, C.K., “Coatings clinic: Interfaces and migration,” JCT CoatingsTech, 6, 48, (May 2009).

2157. no author cited, “Two new coatings-related standards released by ASTM International,” JCT CoatingsTech, 6, 19, (Jun 2009).

1006. Kusano, Y., T. Noguchi, M. Yoshikawa, N. Kato, and K. Naito, “Effect of discharge treatment on vulcanised rubber surfaces,” in IRC '95 Kobe International Rubber Conference Proceedings, 432-435, Japan Society of Rubber Industry, 1995.

9. Andrews, E.H., and N.E. King, “Surface energetics and adhesion,” in Polymer Surfaces, 47-63, John Wiley & Sons, 1978.

43. Briggs, D., “Analysis and chemical imaging of polymer surfaces by SIMS,” in Polymer Surfaces and Interfaces, Feast, W.J., and H.S. Munro, eds., 33-53, John Wiley & Sons, 1987.

62. Clark, D.T., and W.J. Feast, eds., Polymer Surfaces, John Wiley & Sons, 1978.

71. Davies, M.C., “SSIMS - an emerging technique for the surface chemical analysis of polymeric biomaterials,” in Polymer Surfaces and Interfaces II, Feast, W.J., H.S. Munro, and R.W. Richards, eds., 203-226, John Wiley & Sons, Apr 1993.

93. Feast, W.J., and H.S. Munro, eds., Polymer Surfaces and Interfaces, John Wiley & Sons, 1987.

95. Feast, W.J., H.S. Munro, and R.W. Richards, eds., Polymer Surfaces and Interfaces II, John Wiley & Sons, Apr 1993.

118. Garbassi, F., M. Morra, and E. Occhiello, Polymer Surfaces: From Physics to Technology, John Wiley & Sons, Nov 1997.

125. George, G.A., “Surface modification and analysis of ultra-high modulus polyethylene fibres for composites,” in Polymer Surfaces and Interfaces II, Feast, W.J., H.S. Munro, and R.W. Richards, eds., 161-202, John Wiley & Sons, Apr 1993.

398. Yasuda, H.K., D.L. Cho, and Y.-S. Yeh, “Plasma-surface interactions in the plasma modification of polymer surfaces,” in Plasma Surfaces and Interfaces, Feast, W.J., and H.S. Munro, eds., 149-162, John Wiley & Sons, 1987.

429. Briggs, D., and M.P. Seah, Practical Surface Analysis: By Auger and X-Ray Photoelectron Spectroscopy, John Wiley & Sons, 1983.

620. Vogler, E.A., “On the origins of water wetting terminology,” in Water in Biomaterials Surface Science, Morra, M., ed., 149-182, John Wiley & Sons, Sep 2001.

621. Della Volpe, C., and S. Siboni, “The evaluation of electron-donor and electron-acceptor properties and their role in the interaction of solid surfaces with water,” in Water in Biomaterials Surface Science, Morra, M., ed., 183-214, John Wiley & Sons, Sep 2001.

635. Gombotz, W.R., and A.S. Hoffman, “Functionalization of polymeric films by plasma polymerization of allyl alcohol and allylamine,” in Plasma Polymerization and Plasma Treatment of Polymers, Yasuda, H.K., ed., 285-303, John Wiley & Sons, May 1988.

639. Hoffman, A.S., “Biomedical applications of plasma gas discharge processes,” in Plasma Polymerization and Plasma Treatment of Polymers, Yasuda, H.K., ed., 251-267, John Wiley & Sons, 1988.

640. Iriyama, Y., and H. Yasuda, “Plasma treatment and plasma polymerization for surface modification of flexible poly(vinyl chloride),” in Plasma Polymerization and Plasma Treatment of Polymers, Yasuda, H.K., ed., 97-124, John Wiley & Sons, 1988.

647. Marchant, R.E., C.J. Chou, and C. Khoo, “Effect of nitrogen RF plasma on the properties of polypropylene,” in Plasma Polymerization and Plasma Treatment of Polymers, Yasuda, H.K., ed., 126-138, John Wiley & Sons, 1988.

655. van Oss, C.J., “Acid-base effects at polymer interfaces,” in Polymer Surfaces and Interfaces II, Feast, W.J., H.S. Munro, and R.W. Richards, eds., 267-286, John Wiley & Sons, Apr 1993.

 

<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | Next-->