Accudynetest logo

Products available online direct from the manufacturer

ACCU DYNE TEST ™ Bibliography

Provided as an information service by Diversified Enterprises.

3040 results returned
showing result page 31 of 76, ordered by

760. Kaplan, S.L., and P.W. Rose, “Plasma surface treatment,” in Coatings Technology Handbook, Satas, D., ed., 295-301, Marcel Dekker, 1991 (also in Coatings Technology Handbook, 2nd Ed., D. Satas and A.A. Tracton, eds., p. 351-357, Marcel Dekker, Jan 2001, and Coatings Technology: Fundamentals, Testing, and Processing Techniques, A.A. Tracton, ed., p. 40/1-40/6, CRC Press, Oct 2006).

1453. Kaplan, S.L., and P.W. Rose, “Plasma surface treatment of plastics to enhance adhesion,” Intl. J. Adhesion and Adhesives, 11, 109-113, (Apr 1991).

Adhesion, whether the bonding of polymers or the adhesion of coatings to polymer surfaces, is a recurring and difficult problem throughout the plastics industry. This paper introduces a proven, yet relatively unknown technology which provides an efficient, economic and versatile solution to adhesion problems: cold gas plasma surface treatment. Through plasma processing, it is possible to re-engineer the furface chemistry of any polymer to maximize its adhesive qualities. The result is optimum performance, even from inexpensive materials, and maximum flexibility in design decision-making.

1456. Kaplan, S.L., and P.W. Rose, “Plasma surface treatment of plastics to enhance adhesion,” in Adhesion '90, 4/1-4/7, Sep 1990.

1469. Kaplan, S.L., and P.W. Rose, “Plasma surface treatment,” in Coatings Technology: Fundamentals, Testing, and Processing Techniques, Tracton, A.A., ed., 40/1-40/6, CRC Press, Oct 2006.

2147. Kaplan, S.L., and W.P. Hansen, “Gas plasma treatment of Kevlar and Spectra fabrics for advanced composites,”, 1999.

2218. Kaplan, S.L., and W.P. Hansen, “Plasma - the environmentally safe method to prepare plastics and composites for adhesive bonding and painting,” Presented at SAMPE Environmental Symposium, May 1991.

2866. Karbowiak, T., F. Debeaufort, and A. Voilley, “Importance of surface tension characterization for food, pharmaceutical and packaging products: A review,” Critical Reviews in Food Science and Nutrition, 46, 391-407, (2006).

This article reviews the various theoretical approaches that have been developed for determination of the surface tension of solids, and the applications to food industrial products. The surface tension of a solid is a characteristic of surface properties and interfacial interactions such as adsorption, wetting or adhesion. The knowledge of surface tension is thus of great interest for every domain involved in understanding these mechanisms, which recover a lot of industrial investigations. Indeed, it is the case for the packaging industry, the food materials science, the biomedical applications and the pharmaceutical products, cleaning, adhesive technology, painting, coating and more generally all fields in relation with wettability of their systems. There is however no direct method for measurements of surface tension of solids, except the contact angle measurements combined with an appropriate theoretical approach are indirect methods for estimation of surface tension of solids. Moreover, since the publication by Young (1805) who developed the basis of the theory of contact angle some two hundred years ago, measurements and interpretations are still discussed in scientific literature, pointing out the need to better understand the fundamental mechanisms of solid-liquid interfacial interactions. Applications of surface tension characterization in the field of food materials science are detailed, especially for packaging and coating applications, which recover different actual orientations in order to improve process and quality.

1807. Kasai, H., M. Kogoma, T. Moriwaki, and S. Okazaki, “Surface structure estimation by plasma fluorination of amorphous carbon, diamond, graphite and plastic film surfaces,” J. Physics D: Applied Physics, 19, L225-L228, (1986).

Various carbon films which have been produced in plasma have been fluorinated so that their surface structures could be analysed. Every fluorinated carbon film shows a characteristic contact angle change which follows its surface structure. These samples can be classified into two groups: amorphous and crystal, from comparison of the ratios of the area due to fluorine in the C1s peak to the total area of the C1s peak in ESCA results.

1455. Kasemura, T., S. Ozawa, and K. Hattori, “Surface modification of fluorinated polymers by microwave plasmas,” J. Adhesion, 33, 33-44, (Nov 1990).

We developed a new plasma treating method, incorporating the use of microwaves generated by an electronic cooking range. Using this method, polytetrafluorethylene (PTFE) and a copolymer of tetrafluoroethylene and hexafluoropropylene (FEP) were treated. Dialkylphthalates (DAP) were used as the standard liquids of contact angle measurements for evaluation of the wetting properties of plasma treated polymers. The components of surface tension (γL) due to the dispersion force (γd L) and the polar force (γP L) of DAP were calculated by Fowkes' equation from the contact angles (θ) on polypropylene. After plasma treatment cos θ of several standard liquids on PTFE and FEP increased. The linear relationship between γL(1 + cos θ)/(γd L)½ and (γP LP L)½ was verified. γs and γd s and γd s of the plasma treated PTFE and FEP also increased. From the results of ESCA analysis, it was found that a significant amount of oxygen was introduced to the polymer surface by the plasma treatment. Peel strengths of a pressure sensitive adhesive bonded to PTFE and FEP increased approximately two-to threefold if the plasma treatment was used prior to bonding.

2813. Kasson, A., and F. Fiddler, “Effects of surface treatment on adhesion for plastic components,” Plastics Decorating, 40-42, (May 2020).

2542. Katnani, A.D., A. Knoll, and M.A. Mycek, “Effects of environment and heat treatment on an oxygen plasma-treated polyimide surface and its adhesion to a chromium overcoat,” J. Adhesion Science and Technology, 3, 441-453, (1989).

—The effects of oxygen plasma treatment time, duration of storage, and heat treatment on the surface chemistry of and Cr adhesion to Dupont RC5878 and Kapton polyimides were investigated using X-ray photoelectron spectroscopy (XPS), and contact angle and peel strength measurements. The XPS results indicate that the initial stage of plasma treatment involves oxygen adsorption with insignificant modification of the surface chemistry. After 5 s of plasma treatment the surface chemistry is modified, as suggested by the changes in the carbonyl and partially oxidized carbon functional groups' contributions to the C(1s) line shape. These modifications resulted in an increase in the peel strength and a decrease in the contact angle of water. Over the first month of storage, the intensity of the carbonyl functional group peak decreased, while the contact angle increased and reached a steady-state value of 30° after 20 days of storage. These changes are mainly attributed to moisture absorption. Importantly, the metal adhesion to polyimide remained fairly constant over the storage period. The aged plasma-treated surface experienced loss of moisture when baked at 150°C for less than 5 min. This was followed by an increase of the partially oxidized carbon at the expense of the plasma-induced carbon-oxygen bonds at higher baking temperatures or longer times.

2784. Kato, Y., F.M. Fowkes, and J.W. Vanderhoff, “Surface energetics of the lithographic printing process,” Industrial & Engineering Chemistry Product Research & Development, 21, 441-450, (1982).

188. Katoh, K., “Change of polypropylene film surface by chromic acid mixture treatment,” J. Applied Polymer Science, 19, 1593-1599, (1975).

Polypropylene films were treated with chromic acid mixture. The change in the treated films was investigated by comparing change in amount of 2,4-dinitrophenylhydrazones formed in the treated films with their change in wettability with water. Oxidation of the film surface zone, partial breakdown of polymer in the film surface zone, and oxidation of surface zone bared from the film inner zone seemed to occur with increase in treatment time or with increase in treatment temperature.

1062. Katoh, K., “Contact angle and surface tension measurement,” in Surface and Interfacial Tension: Measurement, Theory, and Applications, Hartland, S., ed., 375-424, Marcel Dekker, 2004.

The wetting phenomenon is an important issue in various technological processes. In some fields, liquids are desired to spread over solid surfaces, e.g., lubrication oils on metallic surfaces or paint on paper. On the other hand, it is necessary for hydrophobic coatings to repel water such as Teflon film on frying pans. The behavior of bubbles on solid surfaces immersed in liquid often has important effects on the performance of industrial apparatus dealing boiling or condensation. In these problems regarding wetting, it is known that the behavior of a drop or bubble on a solid surface is dependent on the three interfacial tensions between solid, gas, and liquid phases, as shown in Fig. 1. The tangential force balance between these interfacial tensions on the three-phase contact line leads to the following well-known Young’s equation [1]: σSV−σSL=σLV cos αY. (1) σSV, σSL, and σLV indicate solid-vapor, solid-liquid, and liquid-vapor interfacial tensions, respectively. The environmental atmosphere is assumed to be filled with saturated vapor of liquid. When a drop is exposed to air, however, σLV usually does not change because a thin layer of saturated vapor may be formed around the drop [2]. In the right-hand side of Eq. (1), αY is the angle between the solid surface and the liquid-vapor interface measured from the inside of the liquid phase and is called the contact angle. When the difference between the two interfacial tensions on the left-hand side of Eq. (1) is large enough to make αY on the right-hand side small, the solid is favorably wetted by the liquid. As the drop size becomes sufficiently small and the curvature of the solid-gas-liquid contact line becomes quite large, we should add a term representing the effect of line tension to the above equation [3].

189. Katoh, K., H. Fujita, and H. Sasaki, “Macroscopic wetting behavior and a method for measuring contact angles,” J. Fluids Engineering, 112, 289-295, (1990).

Macroscopic wetting behavior is investigated theoretically from a thermodynamic viewpoint. The axisymmetric liquid meniscus formed under a conical solid surface is chosen as the subject of the theoretical analysis. Using the meniscus configuration obtained by the Laplace equation, the total free energy of the system is calculated. In the case of the half vertical angle of the cone φ = 90 deg (horizontal plate), the system shows thermodynamic instability when the meniscus attaches to the solid surface at the contact angle. This result, unlike the conventional view, agrees well with the practical wetting behavior observed in this study. On the other hand, when 0 deg < φ < 90 deg, the system shows thermodynamic stability at the contact angle. However, when the solid cone is held at a position higher than the critical height from a stationary liquid surface, the system becomes unstable. It is possible to measure the contact angle easily using this unstable phenomenon.

2634. Katz, S., “With film substrates becoming more popular, corona treatment is increasingly more important,” Label & Narrow Web, 20, 70-72, (Oct 2015).

2883. Katz, S., “Corona treatment,” Label & Narrow Web, 27, 55-57, (Mar 2022).

2444. Kaverman, J., “Causes of adhesion problems #3: Failure to pre-treat,”, Aug 2011.

2605. Kaverman, J., “TPE, TPO, TPU present challenges for pad printing,”, Feb 2015.

2631. Kaverman, J., “Methods and materials for difficult pad printing operations,” Plastics Decorating, 14-16, (Jan 2016).

970. Kawabe, M., S. Tasaka, and N. Inagaki, “Effects of nitrogen plasma treatment of pressure-sensitive adhesive layer surfaces on their peel adhesion behaviour,” J. Adhesion Science and Technology, 13, 573-592, (1999).

The influence of the surface modification of pressure-sensitive adhesive tapes on their adhesion behavior has been investigated. PBA [poly(butyl acrylate)] and PIB [poly(isobutylene)] adhesives were chosen as pressure-sensitive adhesives and nitrogen plasma was used for the surface modification of the adhesives. The peel force of PBA or PIB adhesive/stainless steel joints was evaluated. The nitrogen plasma treatment showed large effects on the adhesion behavior of both the PBA and the PIB adhesives. The peel force for the PBA adhesive/stainless steel joint decreased by 57 times as a result of the nitrogen plasma treatment and that for the PIB adhesive/stainless steel joint increased by 2.2 times. There are essential differences in the modification reactions caused by the nitrogen plasma between the PBA and PIB adhesives. For the PBA adhesive, cross-linking reactions occurred among the PBA polymer chains and the surface was hardened. For the PIB adhesive, degradation reactions occurred and products with a low molecular weight were formed on the surface. These differences are due to the different responses of the PBA and PIB adhesives towards the nitrogen plasma. The mechanism of the changes in adhesion behavior caused by the nitrogen plasma is discussed.

681. Kawano, S., et al, “Water base adhesion promoter for polypropylene and method for coating to polypropylene materials using the promoter,” U.S. Patent 6447844, Sep 2002.

1919. Kawasaki, K., “Study of wettability of polymers by sliding of water drop,” J. Colloid Science, 15, 402-407, (Oct 1960).

190. Kawese, T., M. Uchita, T. Fujii, and M. Minagawa, “Acrylic acid grafted polyester surface: surface free energies, FT-IR (ATR), and ESCA characterization,” Textile Research J., 61, 146-152, (1991).

The surface of polyester grafted with acrylic acid has been characterized using contact angle measurements of a two-liquid phase system and FT-IR and ESCA spectroscopy as a function of the concentration of acrylic acid on grafting. The COOH groups on the polymer surface influence only the polar component γs p of surface energy and not the dispersive one γs d. Both the FT-IR and ESCA characterizations, showing the transformation of COOH to COONa by alkaline treatment, provide information with a high degree of surface sensitivity, comparable to that of contact angle measurements. The relative area ratios of the COONa peak to the COOR peak by FT-IR ( Asurface) and of the Na1s peak to the C1s peak by ESCA are linearly correlated to γsp.

1459. Ke-Chang, G., and Z. Shao-Hua, “Plasma treatment on polytetrafluoroethylene and the adhesion property,” in Antec '88, 1555-1558, Society of Plastics Engineers, Apr 1988.

2383. Kelly, P.T., “Corona-discharge treated release films,” U.S. Patent 4978436, Dec 1990.

2580. Kemppi, A., “Studies on the adhesion between paper and low density polyethylene (PhD thesis),” Abo Akademi, 1997.

897. Kendall, K., “Energy analysis of adhesion,” in Adhesion Science and Engineering: Vol. 1 - The Mechanics of Adhesion; Vol. 2 - Surfaces, Chemistry and Applications, Dillard, D.A., and A.V. Pocius, eds., 77-110(V1), Elsevier, Oct 2002.

502. Kennedy, B.S., and R. Burley, “Dynamic fluid interface displacement and prediction of air entrainment,” J. Colloid and Interface Science, 62, 48-62, (1977).

The problem of the deformation of a quiescent air/liquid interface by a plunging solid surface is considered in the context of a differential force balance of the type used in withdrawal theory. Interfacial deformation and air entrainment which eventually arises at high speeds are discussed in terms of three separate regions: where the dynamic contact angle, θ, is >90°, 90° > θ > 180°, and θ → 180°. This latter condition leads to the development of a dimensionless correlation between Weber and Bond numbers correlating air entrainment data which were found to be in substantial agreement with the experimental results. The theoretical and experimentally measured profiles also showed good agreement, particularly for viscosities up to 6.77 P and dynamic contact angles less than 180°, for surface tensions in the range 34 < π < 65 dyn·cm−1.

191. Kenny, J., “Corona treating,” Label & Narrow Web Industry, 3, 30-35, (Nov 1998).

1588. Kersten, H., H. Deutsch, H. Steffan, G.M.W. Kroesen, and R. Hippler, “The energy balance at substrate surfaces during plasma processing,” Vacuum, 63, 385-431, (2001).

A summary is given of different elementary processes influencing the thermal balance and energetic conditions of substrate surfaces during plasma processing. The discussed mechanisms include heat radiation, kinetic and potential energy of charged particles and neutrals as well as enthalpy of involved chemical surface reactions. The energy and momentum of particles originating from the plasma or electrodes, respectively, influence via energy flux density (energetic aspect) and substrate temperature (thermal aspect) the surface properties of the treated substrates. The various contributions to the energy balance are given in a modular mathematical framework form and examples for an estimation of heat fluxes and numerical values of relevant coefficients for energy transfer, etc. are given. For a few examples as titanium film deposition by hollow cathode arc evaporation, silicon etching in CF4 glow discharge, plasma cleaning of contaminated metal surfaces, and magnetron sputtering of aluminum the energetic balance of substrates during plasma processing will be presented. Furthermore, the influence of the resulting substrate temperature on characteristic quantities as etching or deposition rates, layer density, microstructure, etc. will be illustrated for some examples, too.

1909. Khairallah, Y., F. Arefi, J. Amouroux, D. Leonard, and P. Bertrand, “Surface fluorination of polyethylene films by different glow discharges. Effects of frequency and electrode configuration,” J. Adhesion Science and Technology, 8, 363-381, (1994) (also in Plasma Surface Modification of Polymers: Relevance to Adhesion, M. Strobel, C.S. Lyons, and K.L. Mittal, eds., p. 147-166, VSP, Oct 1994).

1551. Kiddell, P., “Understanding and using pad printing inks,”, 0.

2830. Kiel, A., “Corona vs. plasma treatment,”, Aug 2016.

2832. Kiel, A., “Corona treatment systems - overcoming the effects of heat and humidity,”, Jul 2017.

2833. Kiel, A., “Finding the sweet spot and the right corona treater for polypropylene,”, Mar 2020.

192. Kigle-Boeckler, G., “Surface tension measurement (ring method) and characterization of coating materials,” in Surface Phenomena and Additives in Water-Based Coatings and Printing Technology, Sharma, M.H., ed., 269-282, Plenum Press, Feb 1992.

A detail discussion of the theoretical aspects of surface tension measurements by ring method is provided with special emphasis on the sources of error. The accuracy of the measured data is mainly limited by the correction factor “f”, which compensates for the non-symmetrical shape of the surface. Based on the experimental findings, it is suggested to include the correction factor during the evaluation of the surface tension, especially if an accuracy of less than 0.1mN/m is required. The effect of meniscus shape and size on the surface tension is discussed. In addition to the surface tension measurements, several other physical properties of the coating systems such as settling behavior and hardness of the settlement can be measured by using the dynometer from BYK-Gardner as a measuring device. The results on different coating systems are presented to study the settling and hardness of the settled material.

2770. Kilpadi, D.V., and J.E. Lemons, “Surface energy characterization of unalloyed titanium implants,” J. Biomedical Materials Research, 28, 1419-1425, (Dec 1994).

Osteointegration is dependent on a variety of biomechanical and biochemical factors. One factor is the wettability of an implant surface that is directly influenced by its surface energy. This investigation used the Zisman plot to determine critical surface energy. The effects of surface treatment, bulk grain size, and surface roughness on the critical surface tension of unalloyed titanium (Ti) were examined. Radio frequency glow discharge-treated Ti had the highest critical surface tension, followed by the passivated and heat-sterlized conditions. Titanium with no surface treatment had the lowest critical surface tension. The surface energy of Ti with an average grain size of 23 μm was not significantly different from that with a grain size of 70 μm. Surface roughness was shown to cause significant difference in measurements and definitely should be considered in studies of this kind. © 1994 John Wiley & Sons, Inc.

1131. Kim, B.G., E.-H. Son, S.-E. Kim, and J.-C. Lee, “Surface properties of the novel fluoropolymer having extremely low surface energy,” PMSE Preprints, 93, 610-611, (2005).

1221. Kim, B.K., K.S. Kim, C.E. Park, and C.M. Ryu, “Improvement of wettability and reduction of aging effect by plasma treatment of low-density polyethylene with argon and oxygen mixtures,” J. Adhesion Science and Technology, 16, 509-521, (2002).

To improve the hydrophilicity and reduce the aging effect, argon and oxygen mixtures were employed in the plasma treatment of low-density polyethylene (LDPE). Argon resulted in producing more oxygen ions and radicals in the plasma than only oxygen and forming cross-linked layers on the LDPE surface. Therefore, the water contact angle on plasma-treated LDPE decreased and the oxygen content measured by X-ray photoelectron spectroscopy (XPS) increased with the increase of argon content. The aging effect was also much reduced with the increase of argon content since argon induced cross-linking.


<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | Next-->