Accudynetest logo

Products available online direct from the manufacturer

ACCU DYNE TEST ™ Bibliography

Provided as an information service by Diversified Enterprises.

3053 results returned
showing result page 29 of 77, ordered by
 

1210. Dorai, R., and M.J. Kushner, “A model for plasma modification of polypropylene using atmospheric pressure discharges,” J. Physics D: Applied Physics, 36, 666-685, (2003).

Atmospheric pressure plasmas are commonly used to improve the wetting and adhesion properties of polymers. In spite of their use, the mechanisms for achieving these properties are unclear. In this regard, we report on a computational investigation of the gas phase and surface kinetics during humid-air corona treatment of polypropylene (PP) and the resulting modification of its surface properties while varying energy deposition, relative humidity (RH), web speed, and gas temperature. Using results from a global plasma chemistry model validated against experiments, we found that increasing energy deposition increased the densities of alcohol, carbonyl, acid, and peroxy radicals on the PP surface. In doing so, significant amounts of gas phase O3 and NxOy are produced. Increasing the RH increased the production of peroxy and acid groups, while decreasing those of alcohol and carbonyl groups. Production of O3 decreased while that of HNO3 increased. Increasing the temperature decreased the concentrations of alcohol, carbonyl, and acid groups on PP while those of the peroxy radicals increased. For a given energy deposition, higher web speeds resulted in decreased concentrations of alcohols, peroxy radicals, carbonyl, and acid groups on PP.

1207. Della Volpe, C., S. Siboni, D. Maniglio, M. Morra, C. Cassinelli, et al, “Recent theoretical and experimental advancements in the applications of the van Oss-Chaudhury-Good acid-base theory to the analysis of polymer surfaces, II: Some peculiar cases,” J. Adhesion Science and Technology, 17, 1425-1456, (2003).

According to the general guidelines presented in the accompanying paper, some relevant examples of common polymer surfaces are analysed and discussed; a number of polymers commercially available or laboratory synthesized have been analysed. In particular, the case of poly(vinyl chloride) (PVC), often considered as peculiar in the literature, is fully analysed on the basis of a new set of well-prepared samples, whose compositions were checked by high-vacuum spectroscopies. 'Equilibrium' contact angles, obtained by a new experimental technique, are presented. The results are, however, preliminary, because the final set of liquids used is not so 'well equilibrated' as possible, from the point of view of acid–base properties. The contact angle data obtained are analysed in a non-linear way to calculate the acid–base components of all the liquids and solids. The results are discussed and compared with those obtained from liquid–liquid interfaces presented in the accompanying paper. The physico-chemical features of these samples have also been compared with the adhesion properties of some bacterial cells, commonly found as infective agents on biomaterials surfaces of medical devices, in order to rationalize these results within the theoretical framework of acid–base theory.

1200. Charbonnier, M., and M. Romand, “Polymer pretreatments for enhanced adhesion of metals deposited by the electroless process,” Intl. J. Adhesion and Adhesives, 23, 277-285, (2003).

Metallization techniques based on electroless plating are widely used to coat polymer materials in a large variety of technological applications. Traditionally, dilute tin chloride (SnCl2) and palladium chloride (PdCl2) solutions in HCl are used to render the surface of such non-conductive substrates catalytically active towards metal deposition in the electroless plating solution. In the present work, it is shown how X-ray photoelectron spectroscopy has allowed to monitor the chemical and compositional surface modifications of polymer substrates (polypropylene, polycarbonate) subjected to plasma and UV or VUV irradiation (use of ArF* excimer laser and Xe2* incoherent excimer lamp, respectively) in oxygenated (O2, air) or nitrogenated (N2, NH3) atmospheres, as well as to understand the mechanisms of the catalyst (palladium species) chemisorption on the so-grafted surfaces through the use of a simple dilute palladium chloride solution in HCl. In addition, this work has allowed to bring into light the precise role that the reducer plays (sodium hypophosphite) present in the electroless nickel bath. In short, this research has been successful in allowing the development of new approaches for the electroless metallization of polymer surfaces.

1199. Cepeda-Jiminez, C.M., R. Torregrosa-Macia, and J.M. Martin-Martinez, “Surface modifications of EVA copolymers induced by low pressure RF plasmas from different gases and their relation to adhesion properties,” J. Adhesion Science and Technology, 17, 1145-1159, (2003).

Two ethylene vinyl acetate (EVA) copolymers (12 and 20 wt% of vinyl acetate,VA, content) have been treated with low pressure RF plasmas from non-oxidizing gases (Ar, N2) and oxidizing gases (air, a mixture of 4N2: 6O2 (v/v), O2 and CO2). The formation of polar moieties on both EVAs was more noticeable by treatment with plasmas from non-oxidizing gases than from oxidizing ones (the higher the reactivity, the lower the difference with respect to untreated EVA surfaces). The surface etching with the non-oxidizing plasmas, giving rise to a high roughness, depends on the wt% of VA in the composition of the copolymer because of the different resistances of VA (low) and PE (high) to the non-oxidizing plasma particles bombardment. The adhesion properties obtained using a polyurethane adhesive (PU) showed high T-peel strength values and adhesion failure in EVAs treated with plasmas from oxidizing gases, due to roughness produced causing mechanical interlocking of the adhesive. Lower T-peel strength values were obtained with non-oxidizing plasmas: the values for EVA12 being, in general, lower than those obtained for EVA20. The durability of the treated EVAs/PU adhesive joints after ageing in humidity and temperature was quite good.

954. Owen, M.J., “Surface energy,” in Comprehensive Desk Reference of Polymer Characterization and Analysis, Brady, R.F. Jr., ed., 361-374, Oxford University Press, 2003.

942. Markgraf, D.A., “Atmospheric plasma - the new functional treatment for extrusion coating and lamination processes,” in 2003 European PLACE Conference Proceedings, TAPPI Press, 2003.

817. Kim, J.K., H.S. Kim, and D.G. Lee, “Adhesion characteristics of carbon/epoxy composites treated with low- and atmospheric-pressure plasmas,” J. Adhesion Science and Technology, 17, 1751-1771, (2003).

Although an adhesive joint can distribute load over a larger area than a mechanical joint, requires no holes, adds very little weight to structures and has superior fatigue resistance, it requires careful surface preparation of adherends for reliable joining and low susceptibility to service environments. The load transmission capability of adhesive joints can be improved by increasing the surface free energy of the adherends with suitable surface treatments. In this study, two types of surface treatment, namely the low pressure and the atmospheric pressure plasma treatment, were performed to enhance the mechanical load transmission capabilities of carbon/epoxy composite adhesive joints. The suitable surface treatment conditions for carbon/epoxy composite adhesive joints for both low and atmospheric pressure plasma systems were experimentally investigated with respect to chamber pressure, power intensity and surface treatment time by measuring the surface free energies of the specimens. The change in surface topography of carbon/epoxy composites was measured with AFM (Atomic Force Microscopy) and quantitative surface atomic concentrations were determined with XPS (X-ray Photoelectron Spectroscopy) to investigate the failure modes of composite adhesive joints with respect to surface treatment time. From the XPS investigation of carbon/epoxy composites, it was found that the ratio of oxygen concentration to carbon concentration for both low and atmospheric pressure plasma-treated carbon/epoxy composite surfaces was maximum after about 30 s treatment time, which corresponded with the maximum load transmission capability of the composite adhesive joint.

3026. Sagit-Levanon, S., and M. Marmur, “Validity and accuracy in evaluating surface tension of solids by additive approaches,” J. Colloid and Interface Science, 262, 489-499, (2003).

1851. Dadbin, S., “Surface modification of LDPE film by CO2 pulsed laser irradiation,” European Polymer J., 38, 2489-2495, (Dec 2002).

The influence of the pulsed CO2 laser irradiation on the surface structure of the LDPE film was investigated. Significant changes were observed on the surface of laser treated films as it was verified by the attenuated total reflectance Fourier transform infrared (ATR–FTIR) spectroscopy, scanning electron microscopy and contact angle-measurement. Formation of polar functional groups onto the LDPE surfaces exhibited by the ATR–FTIR spectra was shown to be strongly dependent on the number of the CO2 laser pulses. The intensity of the polar groups increased with increasing the number of pulses up to two and then slightly decreased at three laser pulses. This was also confirmed with the contact angle measurements in which the sample subjected to two laser pulses showed the highest wettability i.e. the lowest water drop contact angle. The concentration of peroxide groups formed on the surface of the laser treated films was determined quantitatively by UV spectroscopic method using iodide procedure. The latter results showed a similar trend with the results obtained using FTIR spectroscopy.

2412. Zhang, D., P.D. Spence, Q. Sun, and L.C. Wadsworth, “Plasma treatment of polymer materials for increased dyeability,” U.S. Patent 6479595, Nov 2002.

Hydrophobic polymer materials having improved dyeability with water-based dyes are prepared by treating a hydrophobic polymer with aglow discharge plasma generated from working gases selected from SO2, O2, N2, He, H2, CO2, CF4, NO, N2O, 2-Hydroxypropyl Methacrylate (HPMA), air or combinations thereof, in which a treated material comprises a hydrophobic inner core and a hydrophilic outer sheath having polar functional groups. A method of treating hydrophobic polymer materials using a glow discharge plasma, preferably at high pressure (e.g., about 50 Torr or greater), thereby modifying the active surface characteristics of the polymer to contain polar functional groups is also presented.

2411. Geibart, D., “Method of surface preparation using plasma in air,” U.S. Patent 6476342, Nov 2002.

In accordance with the present invention, a directed plasma beam is employed in air to selectively remove coatings from paper products at high production rates. The shape and intensity of the beam is controlled to obtain a controlled rate of removal of the coating. The method does not require vacuum to be established and allows for the plasma to be generated from high pressure air.

1549. Oller, S., “Printing on plastic,” American Printer, (Nov 2002).

1524. Chen, Q., “PTFE electret negative charge stability after RF plasma treatment,” J. Physics D: Applied Physics, 35, 2939-2944, (Nov 2002).

An 18 μm nonmetallized polytetrafluoroethylene (PTFE) film is treated in radio frequency (RF) plasma before a point-to-grid corona charged. The isothermal (170°C) surface potential measurement shows that the surface charge stability is significantly dependent on the plasma sources and treatment conditions. Oxygen (O2), oxygen/helium (O2/He) mixture gases and helium (He) plasma treatment enhance the film negative charge stability significantly but not hydrogen (H2) plasma. Electron spectroscopy chemical analysis confirms that this superior negative charge retention for O2 plasma treatment is a result of the high concentration of oxide groups on the subsurface during the plasma treatment.

1171. Brynolf, R., “Method and apparatus, with redundancies, for treating substrate plastic parts to accept paint without using adhesion promoters,” U.S. Patent #6716484, Nov 2002.

A method and device of treating an irregularly shaped article to prepare the article for painting is provided. The device includes a burner which can produce an adjustable flame tongue which can fit into crevices, openings and other irregular topographical features of an item to be painted or otherwise coated. The burner device further provides means to apply a grafting chemical on a freshly oxidized surface. Further, the invention provides means to colorize treated objects so that they may be recognized as having been treated. In another embodiment, the grafting chemicals may be enhanced with electrolytic solutions such that electrostatic methods of painting may be subsequently employed on the item. In an alternate embodiment, the burner is adapted to spray a powder inside of a generally enclosed flame, and is used in conjunction with chop guns to manufacture glass or carbon fiber preforms. In a preferred embodiment all of the main systems of the present invention are provided with redundancies that allow the continuous operation of the device. Further, the device provides means to run and modify the process either locally or by remote communication means.

880. Rowlinson, J.S., Cohesion: A Scientific History of Intermolecular Forces, Cambridge University Press, Nov 2002.

2550. Medard, N., J.-C. Soutif, and F. Poncin-Epaillard, “Characterization of CO2 plasma-treated polyethylene surface bearing carboxylic groups,” Surface and Coatings Technology, 160, 197-205, (Oct 2002).

The surface modification of high density polyethylene by a CO2 microwave plasma is described with the aim of fixing carboxylic groups. The characterization is discussed in terms of functionalization, degradation, crystallization and cross-linking. The formation of carboxylic acids seems mainly favored by the presence of the CO2 active species. The degradation leading via chain scissions to the formation of volatile byproducts is shown to be heterogeneous by mainly affecting amorphous zones. The structural modification is associated with a twisting motion of macromolecular chains having defects to more organized conformations. Finally, cross-linking appears weak due to the absence of chromophoric sites and of VUV radiations in the plasma.

901. Wool, R.P., “Diffusion and autohesion,” in Adhesion Science and Engineering: Vol. 1 - The Mechanics of Adhesion; Vol. 2 - Surfaces, Chemistry and Applications, Dillard, D.A., and A.V. Pocius, eds., 351-402(V2), Elsevier, Oct 2002.

900. Packham, D.E., “Surface roughness and adhesion,” in Adhesion Science and Engineering: Vol. 1 - The Mechanics of Adhesion; Vol. 2 - Surfaces, Chemistry and Applications, Dillard, D.A., and A.V. Pocius, eds., 317-350(V2), Elsevier, Oct 2002.

899. Boerio, F.J., “Surface analysis in adhesion science,” in Adhesion Science and Engineering: Vol. 1 - The Mechanics of Adhesion; Vol. 2 - Surfaces, Chemistry and Applications, Dillard, D.A., and A.V. Pocius, eds., 243-316(V2), Elsevier, Oct 2002.

898. Mangipudi, V.S., and A. Falsifi, “Direct estimation of the adhesion of solid polymers,” in Adhesion Science and Engineering: Vol. 1 - The Mechanics of Adhesion; Vol. 2 - Surfaces, Chemistry and Applications, Dillard, D.A., and A.V. Pocius, eds., 75-138(V2), Elsevier, Oct 2002.

897. Kendall, K., “Energy analysis of adhesion,” in Adhesion Science and Engineering: Vol. 1 - The Mechanics of Adhesion; Vol. 2 - Surfaces, Chemistry and Applications, Dillard, D.A., and A.V. Pocius, eds., 77-110(V1), Elsevier, Oct 2002.

894. Genuario, L., “Corona treatment,” Label & Narrow Web Industry, 7, 58-64, (Oct 2002).

890. Romand, M., M. Charbonnier, and Y. Goepfert, “Plasma and VUV pretreatments of polymer surfaces for adhesion enhancement of electrolessly deposited Ni or Cu films,” in Metallization of Polymers 2, Sacher, E., ed., 191-206, Plenum Publishers, Oct 2002.

Metallized polymer or polymer-based materials are used in a large range of electronics applications including the fabrication of ohmic contacts, chip-level interconnects, printed circuit boards and shielded materials.1–7 For such technological applications, electroless deposition is the most widely used method in practice today.8 Basically, electroless plating is an autocatalytic redox process occurring in aqueous solution between ions of the metal to be deposited (generally Ni or Cu) and a strong reducer. Typical procedures involve a variety of multi-step sequences for the preparation of the surfaces to be coated. Conventionally, substrates are cleaned with solvents to remove surface contaminants, chemically etched to obtain a micro-roughened oxidized surface, and then seeded with a catalyst such as palladium. Chronologically, the seeding process was first accomplished by using a two-step procedure involving substrate treatment successively in dilute SnC12 (sensitization step) and PdC12 (activation step) acidic solutions. Further, a one-step procedure using a colloidal suspension containing both Sn and Pd species (a SnC12/PdC12 acidic solution) has been developed and is presently in common use in industrial environments. In this last case, the Pd/Sn colloidal particles adsorbed on the polymer surface must be exposed (acceleration step) to a solubilizer (a HCl or NaOH solution) to remove the excess of Sn+2 species surrounding the catalytic Pd-based core of the colloidal particles. As can easily be inferred from the details of such multi-step procedures, it is today highly desirable to develop alternative approaches for making the insulating surfaces catalytically active. These approaches should require no chemical surface etching, reduce the number of process steps, and provide a highly selective, well-defined interaction between the catalytic species and the surface to be coated.9

889. Koh, S.K., J.S. Cho, S. Han, K.H. Kim, and Y.W. Beag, “Surface modifications by ion-assisted reactions,” in Metallization of Polymers 2, Sacher, E., ed., 165-190, Plenum Publishers, Oct 2002.

622. Lukowsky, D., and G. Hora, “Pretreatments of wood to enhance the performance of outdoor coatings,” in Quo Vadis - Coatings?: XXVI FATIPEC Congress, Adler, H.-J.P., and K. Potje-Kamloth, eds., 77-86, Wiley-VCH, Oct 2002.

The wet adhesion of water borne acrylic dispersions is a crucial factor on the performance of outdoor coatings on wood. Pine sapwood was treated with several methods for surface activation to increase the wet adhesion of water borne acrylic dispersions. The wet adhesion was measured by pull-off tests as well as with a modified cross-cut test. Atmospheric plasma, corona treatment and fluorination increased the wet adhesion of the coating which is attributed to the increasing polar portion of the surface free energy. Other ways of improving the wet adhesion are the addition of promotors, the use of primers and organisational improvements.

2517. Inagaki, N., S. Tasaka, K. Narushima, and H. Kobayashi, “Surface modification of PET films by pulsed argon plasma,” J. Applied Polymer Science, 85, 2845-2852, (Sep 2002).

The rf power was modulated (discharge on-time of 10 μs and discharge off-time of 50–500 μs), for pulsed argon (Ar) and oxygen (O2) plasmas used to irradiate PET film surfaces to modify the film surfaces. From data regarding the contact angle for the modified PET film surfaces and chemical analyses with XPS, effects of the rf power modulation on the surface modification are discussed. The pulsed Ar and O2 plasmas are effective in modification of the PET film surface. There is no difference in the contact angle between the pulsed plasma and the continuous plasma. Furthermore, the pulsed Ar plasma is advantageous in formation of hydroxyl groups on the PET film surfaces. The rf power modulation has a possibility to modify into peculiar surfaces. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2845–2852, 2002
https://onlinelibrary.wiley.com/doi/abs/10.1002/app.10865

2073. Kaminska, A., H. Kaczmarek, and J. Kowalonek, “The influence of side groups and polarity of polymers on the kind and effectiveness of their surface modification by air plasma action,” European Polymer J., 38, 1915-1919, (Sep 2002).

The changes of contact angle (θ) and surface free energy (γS) under low-temperature air plasma in the polymers of different chemical structure and polarity (polyethylene, PE; polypropylene, PP; poly(ethylene terephtalate), PET and poly(methyl methacrylate), PMMA) pointed out to the greater effect of short-time plasma action (5–15 s) on these parameters as compared to longer times of exposure.

The non-reversion effect of θ changes caused by plasma in PE and PP suggests that the oxidation processes mainly decide about values in nonpolar polymers. The significantly greater θ changes in PE than those in PP indicate that the side groups present in the main chains impede oxidation of such a polymer by plasma.

The reversion of θ changes in PET and in PMMA, and return of these values to almost the initial ones after 10 min storage proves that the main reason for θ changes in polar polymers is a certain alteration of the chain conformation.

These changes, taking place after longer plasma treatment, suggest that the side ester groups in PMMA retard the above-mentioned conformational transformations. Then, in both kinds of polymers (polar and nonpolar) the structure of macrochain decides about the efficiency of reaction caused by plasma, and at the same time the side groups retard not only the oxidation processes but the conformational changes as well.

1546. no author cited, “Wetting tension,” ExxonMobil Chemical Films Europe, Sep 2002.

1193. Akishev, Y.S., M.E. Grushin, A. Napartovich, and N.I. Trushkin, “Novel AC and DC non-thermal plasma sources for cold surface treatment of polymer films and fabrics at atmospheric pressure,” Plasmas and Polymers, 7, 261-289, (Sep 2002).

Novel types of non-thermal plasma sources at atmospheric pressure based on multi-pin DC (direct current) diffusive glow discharge and AC (alternative current) streamer barrier corona have been elaborated and tested successfully for cold surface treatment of polymer films [polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET),] and polyester fabric. Results on physical properties ofdischarges mentioned and output energy characteristics of new plasma sources as well as data on after-treatment changes in wettability of films and fabrics are presented. The main goal of this study was to find out the experimental conditions for gas discharge and surface processing to achieve a remarkable wettability change for a short treatment time.

746. Hansen, C.M., “Cohesion energy parameters applied to surface phenomena,” in Handbook of Surface and Colloid Chemistry, 2nd Ed., K.S. Birdi, ed., 539-554, CRC Press, Sep 2002.

745. Birdi, K.S., “Surface tension and interfacial tension of liquids,” in Handbook of Surface and Colloid Chemistry, 2nd Ed., K.S. Birdi, ed., 67-118, CRC Press, Sep 2002.

The liquid state of matter plays a very important role in everyday life, and the liquid surface has a dominant role in many phenomena. In fact, about 70% of the surface of Earth is covered by water. The most fundamental characteristic of liquid surfaces is that they tend to contract to the smallest surface area to achieve the lowest free energy. Whereas gases have no definite shape or volume, completely filling a vessel of any size containing them, liquids have no definite shape but do have a definite volume, which means that a portion of the liquid takes the shape of that part of a vessel containing it and occupies a definite volume, with the free surface plane except for capillary effects where it is in contact with the vessel. This is evident in rain drops and soap films, in addition to many other systems that will be mentioned later. The cohesion forces present in liquids and solids and the condensation of vapors to liquid state indicate the presence of much larger intermolecular forces than the gravity forces. Furthermore, the dynamics of molecules at interfaces are important in a variety of areas, such as biochemistry, electrochemistry, and chromatography. The degree of sharpness of a liquid surface has been the subject of much discussion in the literature.

696. Wolf, R.A., “Atmospheric plasma: The new functional treatment for nonwovens,” in 2002 PLACE Conference Proceedings, TAPPI Press, Sep 2002.

695. Hill, M., “Flame treatment meets quality management,” in 2002 PLACE Conference Proceedings, TAPPI Press, Sep 2002.

694. Schubert, G., “Adhesion of coatings to aluminum foil - a sticky issue,” in 2002 PLACE Conference Proceedings, TAPPI Press, Sep 2002.

693. Murray, L., and P. McCarry, “Effect of test conditions and PET surface treatment on moisture barrier of multilayer metallized film structures,” in 2002 PLACE Conference Proceedings, TAPPI Press, Sep 2002.

681. Kawano, S., et al, “Water base adhesion promoter for polypropylene and method for coating to polypropylene materials using the promoter,” U.S. Patent 6447844, Sep 2002.

The water base adhesion promotor for polypropylene comprises: a grafted polypropylene chloride, which includes a polypropylene chloride moiety and a maleic anhydride moiety as bonded thereto, and which has a chlorine content of 15-25 weight % and a maleic anhydride moiety content of 1-5 weight %; an amine-neutralized water-soluble resin; a wettability-improving agent; and water; and is characterized by having: a combination ratio of 25-90 weight % as of the grafted polypropylene chloride to the total of the grafted polypropylene chloride and the amine-neutralized water-soluble resin; a combination ratio of 2.5-6.0 weight % as of the wettability-improving agent to the entirety of the promotor; and a solid content of 2-10 weight % of the entirety of the promotor. The method for coating to polypropylene materials comprises: a pretreatment step in which the polypropylene material is beforehand cleaned and then the above water base adhesion promotor is applied, and then dried; and a coating step in which a paint is coated to the material after the pretreatment step.

680. Petri, D.F.S., E.M.A. Pereira, and A.M. Carmona-Ribiero, “Wettability and adhesion of bilayer-forming lipids onto polymeric films,” in Contact Angle, Wettability and Adhesion, Vol. 2, K.L. Mittal, ed., 535-548, VSP, Sep 2002.

679. Ponter, A.B., K.R. Jinna, M. Asapu, and W.R. Jones Jr., “Surface energy and surface roughness changes produced by irradiating polymers with ultraviolet-ozone,” in Contact Angle, Wettability and Adhesion, Vol. 2, K.L. Mittal, ed., 331-344, VSP, Sep 2002.

The surface energies of poly (methyl methacrylate), polycarbonate and poly (tetrafluoroethylene) which have been exposed to UV radiation in an ambient ozone-air atmosphere have been elucidated from surface tension and contact angle data using these test liquids: ethylene glycol, formamide, glycerol, methylene iodide and water. Comparisons of surface energy values obtained using Kaelble’s two-liquid method, Good’s three-liquid method and Neumann’s macroscopic apнproach are reported. It is tentatively suggested that atmospheric moisture may play a role in producнing discordant values since the test liquids ethylene glycol, formamide and glycerol are highly hyнgroscopic in nature. It has been demonstrated that UV/ozone irradiation produces changes in surface roughness. Poly (tetrafluoroethylene) shows three distinct regions: first, where at low irradiation times the surface roughness is enhanced and following this, the roughness decreases before increasнing finally to a terminal value. The behavior is somewhat similar for polycarbonate although the dramatic increase in roughness exhibited by poly (tetrafluoroethylene) is absent. The roughness characteristics are quite different for poly (methyl methacrylate) where a large change in roughness is observed at only one specific irradiation time. Thus presently it is not possible to predict surface roughness changes for a particular polymer and more studies on the morphological changes occurнring at different surfaces are being carried out.

678. Springael, S., and F. de Buyl, “Uncured silicone sealant surface energy as determined by contact angle measurements: A new quantitative tool for the assessment of sealant ease of use,” in Contact Angle, Wettability and Adhesion, Vol. 2, K.L. Mittal, ed., 317-330, VSP, Sep 2002.

The behavior of a silicone sealant during its application, from its extrusion from the carнtridge to the completion of the joint, has been identified as a key feature for professional applicators. This feature called “ease of use’* is very complex and includes many different criteria such as the ease of extrusion and joint smoothing, the aesthetic of surface finish, the stringing, and the action of a tooling aid (aqueous solution of surfactant) during the smoothing operation. Several of these criteнria seem directly linked to surface properties of the uncured sealant. In an attempt to translate these subjective properties into quantitative measurements in the laboratory and to understand the underнlying parameters that can be used to control these features, the surface energy of uncured sealants was measured using the solid-liquid contact angle technique. The surface energy data were further correlated with ratings collected from professional applicators with regards to ease-of-use criteria. A correlation was also built between the contact angle values obtained with various tooling aid soluнtions against the surface of the sealant and the ease of smoothing obtained by using these tooling aids at the application stage. The evolution of the contact angle of a water droplet at the surface of uncured sealant with time provided some insights in the understanding of the migration and/or reнorientation of polar entities from the sealant bulk to the sealant surface.

677. Luner, P.E., and E. Oh, “Surface free energies of cellulose ether films,” in Contact Angle, Wettability and Adhesion, Vol. 2, K.L. Mittal, ed., 299-315, VSP, Sep 2002.

The objective of this study was to determine the surface free energy components of celнlulose ethers films. The surface free energy parameters were calculated from the contact angles of sessile drops of apolar and polar liquids on cellulose ether films cast on glass slides using the Lifshitz-van der Waals/acid-base (LW/AB) approach according to the method of van Oss, Chaudhury and Good (Chem. Rev. 88, 927-941, 1988). The cellulose ethers studied were hydroxypropyl methylcellulose (HPMC), methylcellulose (MC), hydroxypropylcellulose (HPC) and hydroxyethylcellulose (HEC) and ethylcellulose (EC). The total surface free energy of these cellulose ethers ranged from 29-50 mJ/m2. The overall trend in the values of the thermodynamic terms derived from the surface free energy parameters as indicators of hydrophilicity was in good agreement with the relaнtive bulk solubility and hydration behavior of the polymers. Calculation of the work of adhesion with substrates of varying surface free energy parameters indicated that acid-base interactions made a major contribution to the total work of adhesion between cellulose ethers and bipolar surfaces. Changes in surface free energy as a result of the presence of plasticizer or change in solvent compoнsition for EC films were resolvable with the LW/AB approach. Although no direct correlation could be established between the surface free energy parameters and the type of substitution on the celluнlose backbone for the cellulose ethers, the values of the terms derived from the LW/AB approach were consistent with those of cellulose. The LW/AB approach provides a reasonably consistent method for estimating the surface properties of cellulose ethers and the resulting surface free energy parameters are shown to relate to the interfacial properties of the polymers.

 

<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | Next-->