ACCU DYNE TEST ™ Bibliography
Provided as an information service by Diversified Enterprises.
total 2949 entries
showing result page 25 of 74, ordered by “Author”.
2364. Hatada, K., and Y. Yamaguchi, “Method for surface treatment of plastics,” U.S. Patent 3900538, Aug 1975.
2028. Hautojarvi, J., and S. Laaksonen, “On-line surface modification of polypropylene fibers by corona treatment during melt-spinning,” Textile Research J., 70, 391-396, (2000).
478. Hayes, L.J., “Surface energy of fluorinated surfaces,” J. Fluorinated Chemistry, 8, 69+, (1976).
1643. Hazlett, R.D., “On surface roughness effects in wetting phenomena,” in Contact Angle, Wettability and Adhesion: Festschrift in Honor of Professor Robert J. Good, Mittal, K.L., ed., 173-181, VSP, Nov 1993.
638. Heath, R.J., “Review of the surface coating of polymeric substrates. Need to adopt surface and interfacial science priciples to improve product quality,” Progress in Rubber and Plastics Technology, 6, 369-401, (1990).
1431. Hedenqvist, M.S., A. Merveille, K. Odelius, A.-C. Albertsson, and G. Bergman, “Adhesion of microwave-plasma-treated fluoropolymers to thermoset vinylester,” J. Applied Polymer Science, 98, 838-842, (Oct 2005).
2540. Hegemann, D., H. Brunner, and C. Oehr, “Plasma treatment of polymers for surface and adhesion improvement,” Nuclear Instruments and Methods in Physics Research, Section B, 208, 281-286, (Aug 2003).
1215. Heitz, C., “A generalized model for partial discharge processes based on a stochastic process approach,” J. Physics D: Applied Physics, 32, 1012-1023, (1999).
2678. Hejda, F., P. Solar, and J. Kousal, “Surface free energy determination by contact angle measurements - a comparison of various approaches,” in WDS '10 Proceedings, Part III, 25-30, MATFYZ Press, 2010.
1335. Hellwig, G.E.H., and A.W. Neumann, “Contact angles and wetting energies pertinent to pigment behaviour,” Farbe und Lack, 73, 823-829, (1967).
784. Helt, S., J. Evieux, Y. Baziard, V. Nassiet, and J.-A. Petit, “Characterization of acid-base properties of surfaces by contact angle titration:application to the adhesive bonding of silicon carbide,” in Acid-Base Interactions: Relevance to Adhesion Science and Technology, Vol. 2, Mittal, K.L., ed., 399-418, VSP, Dec 2000.
2626. Henry, E.B., “Determination of the surface energy for UV-curable, easy-release coatings,” Presented at RadTech 2016, May 2016.
1580. Herbert, P.A.F., and E. Bourdin, “New generation atmospheric pressure plasma technology for industrial on-line processing,” J. Coated Fabrics, 28, (1999).
1571. Herbert, T., “Atmospheric-pressure cold plasma processing technology,” in Plasma Technologies for Textiles, Shishoo, R., ed., 79-128, Woodhead Publishing, Mar 2007.
985. Herranz, M., “Coextrusion and printing problems,” Plast' 21, 49, 43-45, (Feb 1996).
158. Heusch, C., “Understanding surface tension,” Flexo, 18, 42-43, (Jul 1993).
893. Hibbard, D., “Sticky science: new polymer technology makes it easier to paint and glue plastic parts,” Modern Paints & Coatings, 91, 31, (Dec 2001).
2801. Hild, F., “Surface energy of plastics,” https://www.tstar.com/blog/bid/33845/Surface-Energy-of-Plastics, Dec 2009.
1896. Hill, J.M., E. Karbashewski, A. Lin, M. Strobel, and M.J. Walzak, “Effects of aging and washing on UV- and ozone-treated poly(ethylene terephthalate) and polypropylene,” J. Adhesion Science and Technology, 9, 1575-1591, (1995) (also in Polymer Surface Modification: Relevance to Adhesion, K.L. Mittal, ed., p. 273-290, VSP, May 1996).
695. Hill, M., “Flame treatment meets quality management,” in 2002 PLACE Conference Proceedings, TAPPI Press, Sep 2002.
2196. Hine, C., “Corona collaboration,” Paper Film & Foil Converter, 77, (Nov 2003).
1971. Hirotsu, T., and S. Ohnishi, “Surface modification of some fluorine polymer films by glow discharges,” J. Adhesion, 11, 57-67, (1980).
1762. Hitchcock, S.J., N.T. Carroll, and M.G. Nicholas, “Some effects of substrate roughness on wettability,” J. Materials Science, 16, 714, (1981).
159. Hjertberg, Y., B.A. Sultan, and E.M. Soervik, “The effect of corona discharge treatment of ethylene copolymers on their adhesion to aluminum,” J. Applied Polymer Science, 37, 1183-1195, (1989).
160. Ho, C.-P., and H. Yasuda, “Coatings and surface modification by methane plasma polymerization,” J. Applied Polymer Science, 39, 1541-1542, (1990).
479. Hobbs, J.P., C.S.P. Sung, K. Krishnann, and S. Hill, “Characterization of surface structure and orientation in polypropylene and poly(ethylene terephthalate) films by modified attenuated total reflection IR dichromism studies,” Macromolecules, 16, 193-199, (1983).
480. Hobin, T.P., “Surface tension in relation to cohesive energy with particular reference to hydrocarbon polymers,” J. Adhesion, 3, 327+, (1972).
1373. Hochart, F., J. Levalois-Mitjaville, R. De Jaeger, L. Gengembre, J. Grimblot, “Plasma surface treatment of poly (acrylonitrile) films by fluorocarbon compounds,” Applied Surface Science, 142, 574-578, (Apr 1999).
1159. Hockley, P., and M. Thwaites, “A remote plasma sputter process for high rate web coating of low temperature plastic film with high quality thin film metals and insulators,” AIMCAL News, 28-29, (Dec 2005).
161. Hoebergen, A., Y. Uyama, T. Okada, and Y. Idada, “Graft polymerization of fluorinated monomer onto corona-treated PVA cellulose films,” J. Applied Polymer Science, 48, 1825-1829, (1993).
639. Hoffman, A.S., “Biomedical applications of plasma gas discharge processes,” in Plasma Polymerization and Plasma Treatment of Polymers, Yasuda, H.K., ed., 251-267, John Wiley & Sons, 1988.
481. Hollahan, J.R., and G.L. Carlson, “Hydroxylation of polymethylsiloxane surfaces by oxidizing plasmas,” J. Applied Polymer Science, 14, 2499-2508, (1970).
2376. Holland, G.J., “Subjecting film to corona discharge prior to compression rolling,” U.S. Patent 4548770, Oct 1985.
1517. Holland, L., “Glow discharge excitation and surface treatment in low-pressure plasmas,” in Conference Series No. 54, 220-228, Institute of Physics, 1980.
868. Hollander, A., J. Behnisch, and M.R. Wertheimer, “Plasma vacuum UV effects on polymers,” in Plasma Processing of Polymers (NATO Science Series E: Applied Sciences, Vol. 346), d'Agostino, R., P. Favia, F. Fracassi, eds., 411-422, Kluwer Academic, Nov 1997.
895. Holman, S., “What's your problem?,” Australian Flexo, (Apr 2001).
2369. Hood, J.L., “Method and apparatus for the corona discharge treatment of webs, and webs treated therewith,” U.S. Patent 4298440, Nov 1981.
482. Hook, T.H., R.L. Schmitt, and J.A. Gardella Jr., “Analysis of polymer surface structure by low-energy ion scattering spectroscopy,” Analytical Chemistry, 58, 1285-1290, (1986).
162. Hook, Y.J., J.A. Gardella, Jr., and L. Salvati Jr., “Multitechnique surface spectroscopic studies of plasma-modified polymers, I. Water/argon plasma-modified polymethylmethacrylates,” J. Materials Research, 2, 117-131, (1987).
163. Hook, Y.J., J.A. Gardella, Jr., and L. Salvati Jr., “Multitechnique surface spectroscopic studies of plasma-modified polymers, II. Water/argon plasma-modified polymethylmethacrylate/polymethylacrylic acid copolymers,” J. Materials Research, 2, 132-142, (1987).
<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | Next-->