Accudynetest logo

Products available online direct from the manufacturer

ACCU DYNE TEST ™ Bibliography

Provided as an information service by Diversified Enterprises.

total 2907 entries
showing result page 23 of 73, ordered by “Publisher”.

2720. Manko, D., A. Zdziennicka, K. Szymczyk, and B. Janczuk, “Wettability of polytetrafluoroethylene and polymethyl methacrylate by aqueous solutions of TX-100 and TX-165 mixture with propanol,” J. Adhesion Science and Technology, 29, 1081-1095, (2015).

2721. Gilpin, A.D., B.R. Oakley, and R.G. Dillingham, “Water contact angle as a quantitative measure of total polyethylene surface energy,” J. Adhesion Science and Technology, 29, 890-895, (2015).

2722. Geng, X., Q. Qiang, J. Zhao, J. Yang, and Z. Wang, “The effect of TiO2 morphology on the surface modification of poly(ethylene terephthalate) for electroless plating,” J. Adhesion Science and Technology, 29, 705-715, (2015).

2723. Gotoh, K., Y. Nagai, Y. Yonehara, and Y. Kobayashi, “Surface hydrophilization of two polyester films by atmospheric-pressure plasma and ultraviolet excimer light exposures,” J. Adhesion Science and Technology, 29, 473-486, (2015).

2724. Alm, H.K., G. Strom, J. Schoelkopf, and P. Gane, “Ink-lift-off during offset printing: a novel mechanism behind ink-paper coating adhesion failure,” J. Adhesion Science and Technology, 29, 370-391, (2015).

2725. Weng, M., and Q. Shen, “Effect of liquid surface tension data on the validity and accuracy of solid surface tension components and parameters in the application of the van Oss-Chaudhury-Good approach,” J. Adhesion Science and Technology, 28, 2248-2268, (2014).

2726. Najarzadeh, Z., and A. Ajji, “A novel approach toward the effect of seal process parameters on final seal strength and microstructure of LLDPE,” J. Adhesion Science and Technology, 28, 1592-1609, (2014).

2727. Xiong, L., P. Chen, and Q. Zhou, “Adhesion promotion between PDMS and glass by oxygen plasma pre-treatment,” J. Adhesion Science and Technology, 28, 1046-1054, (2014).

2798. Hu, W., Y. Bai, C. Zhang, N. Li, and B. Cheng, “Coating based on the modified chlorinated polypropylene emulsion for promoting printability of biaxially oriented polypropylene film,” J. Adhesion Science and Technology, 32, 50-67, (2018).

2874. Sengupta, A., and H.P. Schreiber, “Surface characteristics of polyurethane adhesive formulations,” J. Adhesion Science and Technology, 5, 947-957, (1991).

103. Fowkes, F.M., and W.D. Harkins, “The state of monolayers adsorbed at the interface solid-aqueous solution,” J. American Chemical Society, 62, 3377-3386, (1940).

113. Freud, B.B., and H.Z. Freud, “A theory of the ring method for the determination of surface tension,” J. American Chemical Society, 52, 1772-1782, (1930).

156. Harkins, W.D., and H.F. Jordan, “A method for the determination of surface and interfacial tension from the maximum pull on a ring,” J. American Chemical Society, 52, 1751-1772, (1930).

1482. Good, R.J., “A thermodynamic derivation of Wenzel's modification of Young's equation for contact angle, together with a theory of hysteresis,” J. American Chemical Society, 74, 5041-5042, (1952).

2886. Bartell, F.E., and A.D. Wooley, “Solid-liquid-air contact angles and their dependence upon the surface condition of the solid,” J. American Chemical Society, 55, 3518-3527, (1933).

1270. Lukask, J., T. Fenclova, V. Tyrackkova, and J. Vacik, “The surface treatment of polypropylene molds and its effect on the quality of cast contact lenses,” J. Applied Biomaterials, 3, 275-279, (1992).

2870. Jacobsen, J., M. Keif, X. Rong, J. Singh, and K. Vorst, “Flexography printing performance of PLA film,” J. Applied Packaging Research, 3, 91-104, (Apr 2009).

32. Bodo, P., and J.-E. Sundgren, “Adhesion of evaporated titanium films to ion-bombarded polyethylene,” J. Applied Physics, 60, 1161-1168, (1986).

375. Wagner, H.D., “Spreading of liquid droplets on cylindrical surfaces: accurate determination of contact angle,” J. Applied Physics, 67, 1352-1355, (1990).

430. Burkstrand, J.M., “Metal-polymer interfaces: Adhesion and x-ray photoemission studies,” J. Applied Physics, 52, 4795-4800, (1981).

1617. Sonders, L.R., D.P. Enright, and W.A. Weyl, “Wettability, a function of the polarizability of the surface ions,” J. Applied Physics, 21, 338+, (1950).

1765. Chen, J.S., Z. Sun, P.S. Guo, Z.B. Zhang, D.Z. Zhu, and H.J. Xu, “Effect of ion implantation on surface energy of ultrahigh molecular weight polyethylene,” J. Applied Physics, 93, 5103-5108, (2003).

1811. Omenyi, S.N., A.W. Neumann, and C.J. can Oss, “Attraction and repulsion of solid particles by solidification fronts I: Thermodynamic effects,” J. Applied Physics, 52, 789, (Feb 1981).

2324. Kusabiraki, M., “Surface modification of polytetrafluoroethylene by discharges,” J. Applied Physics, Part 1, 29, 2809-2814, (1990).

10. Asfardjani, K., Y. Segui, Y. Aurelle, and N. Abidine, “Effect of plasma treatments on wettability of polysulfone and polyetherimide,” J. Applied Polymer Science, 43, 271-281, (1991).

23. Blais, P., D.J. Carlsson, and D.M. Wiles, “Effects of corona treatment on composite formation.Adhesion between incompatible polymers,” J. Applied Polymer Science, 15, 129+, (1971).

98. Foerch, R., N.S. McIntyre, R.N.S. Sodhi, and D.H. Hunter, “Nitrogen plasma treatment of polyethylene and polystyrene in a remote plasma reactor,” J. Applied Polymer Science, 40, 1903-1915, (1990).

135. Giroux, T.A., and S.L. Cooper, “Surface characterization of plasma-derivatized polyurethanes,” J. Applied Polymer Science, 43, 145-155, (1991).

159. Hjertberg, Y., B.A. Sultan, and E.M. Soervik, “The effect of corona discharge treatment of ethylene copolymers on their adhesion to aluminum,” J. Applied Polymer Science, 37, 1183-1195, (1989).

160. Ho, C.-P., and H. Yasuda, “Coatings and surface modification by methane plasma polymerization,” J. Applied Polymer Science, 39, 1541-1542, (1990).

161. Hoebergen, A., Y. Uyama, T. Okada, and Y. Idada, “Graft polymerization of fluorinated monomer onto corona-treated PVA cellulose films,” J. Applied Polymer Science, 48, 1825-1829, (1993).

170. Inoue, H., A. Matsumoto, K. Matsukawa, et al, “Surface characteristics of polydimethylsiloxane-poly(methylmethacrylate) block copolymers and their PMMA blends,” J. Applied Polymer Science, 41, 1815-1829, (1990).

188. Katoh, K., “Change of polypropylene film surface by chromic acid mixture treatment,” J. Applied Polymer Science, 19, 1593-1599, (1975).

193. Kim, C.Y., and D.A.I. Goring, “Surface morphology of polyethylene after treatment in a corona discharge,” J. Applied Polymer Science, 15, 1357-1364, (1971).

194. Kim, C.Y., J. Evans, and D.A.I. Goring, “Corona-induced autoadhesion of polyethylene,” J. Applied Polymer Science, 15, 1365-1375, (1971).

206. Kuznetsov, A.Y., V.A. Bagryansky, and A.K. Petrov, “Adhesion properties of glow-discharge plasma treated polyethylene surfaces,” J. Applied Polymer Science, 47, 1175-1184, (1993).

208. Lanauze, J.A., and D.L. Myers, “Ink adhesion on corona-treated polyethylene studied by chemical derivatization of surface functional groups,” J. Applied Polymer Science, 40, 595-611, (1990).

211. Lavielle, L., J. Schultz, and K. Nakajima, “Acid-base surface properties of modified poly(ethylene terephthalate) films and gelatin: relationship to adhesion,” J. Applied Polymer Science, 42, 2825-2831, (1991).

215. Lee, L.-H., “Relationship between surface wettability and glass transition temperature of high polymers,” J. Applied Polymer Science, 12, 719-730, (1968).

248. Moshonov, A., and Y. Avny, “The use of acetylene glow discharge for improving adhesive bonding of polymeric films,” J. Applied Polymer Science, 25, 771-781, (1980).

 

<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | Next-->