ACCU DYNE TEST ™ Bibliography
Provided as an information service by Diversified Enterprises.
total 2949 entries
showing result page 21 of 74, ordered by “Author”.
1713. Gilbertson, T.J., “Troubleshoot surface treating for print,” Converting, 26, 42-47, (Jun 2008).
2477. Gilbertson, T.J., “Extrusion bonding success improved with surface treating,” http://www.enerconind.com/treating/corona/tech-papers-articles/extrusion, Sep 2013.
2619. Gilbertson, T.J., “Finicky films: The signature relationship to corona treaters,” Flexo, 40, 48-51, (Sep 2015).
2663. Gilbertson, T.J., “Using watt density to predict dyne levels,” http://www.enerconind.com/treating/library/technical-articles/using-watt...,
2810. Gilbertson, T.J., “Hey buddy can you spare a dyne?,” PFFC, 25, 16-18, (Jan 2020).
2243. Gilbertson, T.J., M. Leonardelli, and R.A. Wolf, “Optimizing blown film line layouts for improved surface treating performance,” J. Plastic Film and Sheeting, 26, 83-104, (Jan 2010).
1775. Gilbertson, T.J., and M. Plantier, “Blame the corona treater: The truth about watt density, dyne levels & adhesion,” Converting Solutions, 24, 22-27, (Feb 2019).
2587. Gilbertson, T.J., and M. Plantier, “Blame the corona treater - the truth about watt density, dyne levels, and adhesion,” Converting Quarterly, 4, 82-84, (Apr 2014).
1963. Gillberg, G., “Polymer surface characterization: An overview,” J. Adhesion, 21, 129-154, (Feb 1987).
133. Gilleo, K.B., “Rheology and surface chemistry for screen printing,” ScreenPrinting, 79, 128, (Feb 1989).
875. Gilleo, K.B., “Rheology and surface chemistry,” in Coatings Technology Handbook, Satas, D., ed., 3-19, Marcel Dekker, 1991 (also in Coatings Technology Handbook, 2nd Ed., D. Satas and A.A. Tracton, eds., p. 3-17, Marcel Dekker, Jan 2001, and Coatings Technology: Fundamentals, Testing, and Processing Techniques, A.A. Tracton, ed., p. 1/1-1/9, CRC Press, Oct 2006).
2323. Gilman, A., “Effect of treatment conditions in a glow discharge on the wettability of PTFE,” High Energy Chemistry, 24, 64-66, (1990).
2721. Gilpin, A.D., B.R. Oakley, and R.G. Dillingham, “Water contact angle as a quantitative measure of total polyethylene surface energy,” J. Adhesion Science and Technology, 29, 890-895, (2015).
134. Girifalco, L.A., and R.J. Good, “A theory for the estimation of surface and interfacial energies, I. Derivation and application to interfacial tension,” J. Physical Chemistry, 61, 904-909, (1957).
135. Giroux, T.A., and S.L. Cooper, “Surface characterization of plasma-derivatized polyurethanes,” J. Applied Polymer Science, 43, 145-155, (1991).
2921. Glasmacher-Seiler, B., S. Voigt, and H. Reul, “Determination of surface energetic properties by contact angle measurements,” in The Reference Materials of the European Communities, W. Lemm, ed., 85-94, Springer, 1992.
2404. Glocker, D.A., M.M. Romach, R.C. Soper, and E.A. Perez-Albuerne, “Glow discharge treatment of a web substrate surface in a web coating line,” U.S. Patent 5954926, Sep 1999.
2312. Glocker, D.A., and M.M. Romach, “Near atmospheric pressure treatment of polymers using helium discharges,” U.S. Patent 5767469, Jun 1998.
2161. Glogauer, S., “Plasma and adhesion to rubber, plastics substrates,” Rubber and Plastics News, 38, 16-19, (Jun 2009).
1393. Glover, J.H., “Slip migration in extrusion coatings of LDPE,” in 1987 Polymers, Laminations and Coatings Conference Proceedings, 231, TAPPI Press, Aug 1987.
465. Golander, C.-G., and B.-A. Sultan, “Surface modification of polyethylene to improve its adhesion to aluminum,” J. Adhesion Science and Technology, 2, 125, (1988).
2061. Goldblatt, R.D., L.M. Ferreiro, S.L. Nunes, et al, “Characterization of water vapor plasma-modified polyimide,” J. Applied Polymer Science, 46, 2189-2202, (Dec 1992).
2067. Goldman, M., A. Goldman, and R.S. Sigmond, “The corona discharge, its properties and specific uses,” Pure and Applied Chemistry, 57, 1353-1362, (1985).
2322. Goldshtein, D., “Modification of the surface of polytetrafluoroethylene in a flow discharge plasma in vapors of various organic compounds,” High Energy Chemistry, 25, 303-306, (1991).
136. Golub, M.A., T. Wydeven, and R.D. Cormia, “ESCA study of Kapton exposed to atomic oxygen in low Earth orbit or downstream from a radio-frequency oxygen plasma,” Polymer Communications, 29, 285-288, (1988).
137. Golub, M.A., T. Wydeven, and R.D. Cormia, “ESCA study of several fluorocarbon polymers exposed to atomic oxygen in low Eart h orbit or downstream from a radio-frequency oxygen plasma,” Polymer, 30, 1571-1575, (1989).
138. Golub, M.A., and R.D. Cormia, “ESCA study of poly(vinylidene fluoride) tetrafluoroethylene-ethylene copolymer and polyethylene exposed to atomic oxygen,” Polymer, 30, 1576-1581, (1989).
2423. Gomathi, N., and S. Neogi, “Surface modification of polypropylene using argon plasma: Statistical optimization of the process variables,” Applied Surface Science, 255, 7590-7600, (2009).
635. Gombotz, W.R., and A.S. Hoffman, “Functionalization of polymeric films by plasma polymerization of allyl alcohol and allylamine,” in Plasma Polymerization and Plasma Treatment of Polymers, Yasuda, H.K., ed., 285-303, John Wiley & Sons, May 1988.
2270. Gonzalez, E. II, M.D. Barankin, P.C. Guechl, and R.F. Hicks, “Surface activation of poly(methyl methacrylate) via remote atmospheric pressure plasma,” Plasma Processes and Polymers, 7, 482-493, (Jun 2010).
2732. Gonzalez, E. II, M.D. Barankin, P.C. Guschl, and R.F. Hicks, “Ring opening of aromatic polymers by remote atmospheric-pressure plasma,” IEEE Transactions on Plasma Science, 37, 823-831, (Jun 2009).
2733. Gonzalez, E. II, M.D. Barankin, P.C. Guschl, and R.F. Hicks, “Remote atmospheric-pressure plasma activation of the surfaces of polyethylene terephthalate and polyethylene naphthalate,” Langmuir, 24, 12636-12643, (2008).
141. Good, R.J., “Surface free energy of solids and liquids: thermodynamics, molecular forces, and structure,” J. Colloid and Interface Science, 59, 398-419, (1977).
637. Good, R.J., “Semantic physics of adhesion,” in Treatise on Adhesion and Adhesives, Vol. 5, Patrick, R., ed., 293-312, Marcel Dekker, 1981.
780. Good, R.J., “On the acid/base theory of contact angles,” in Acid-Base Interactions: Relevance to Adhesion Science and Technology, Vol. 2, Mittal, K.L., ed., 167-172, VSP, Dec 2000.
991. Good, R.J., “Contact angle, wetting, and adhesion: A critical review,” J. Adhesion Science and Technology, 6, 1269-1302, (1992) (also in Contact Angle, Wettability and Adhesion: Festschrift in Honor of Professor Robert J. Good, K.L. Mittal, ed., p. 3-36, VSP, Nov 1993).
1482. Good, R.J., “A thermodynamic derivation of Wenzel's modification of Young's equation for contact angle, together with a theory of hysteresis,” J. American Chemical Society, 74, 5041-5042, (1952).
1523. Good, R.J., “Estimation of surface energies from contact angles,” Nature, 212, 276-277, (1966).
1603. Good, R.J., “Theory for the estimation of surface and interfacial energies, VI: Surface energies of some fluorocarbon surfaces from contact angle measurements,” in Contact Angle, Wettability and Adhesion: The Kendall Award Symposium Honoring William A. Zisman (Advances in Chemistry Series 43), Fowkes, F.M., and R.F. Gould, eds., 74-87, American Chemical Society, 1964.
1647. Good, R.J., “Surface entropy and surface orientation of polar liquids,” J. Physical Chemistry, 61, 810-812, (1957).
<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | Next-->