Accudynetest logo

Products available online direct from the manufacturer

ACCU DYNE TEST ™ Bibliography

Provided as an information service by Diversified Enterprises.

3057 results returned
showing result page 20 of 77, ordered by
 

1420. Combellas, C., A. Fuchs, F. Kanoufi, and M.E.R. Shanahan, “The detailed structure of a perturbed wetting triple line on modified PTFE,” in Contact Angle, Wettability and Adhesion, Vol. 4, K.L. Mittal, ed., 43-59, VSP, Jul 2006.

The essential form of an initially straight wetting triple line perturbed by the presence of a (higher surface free energy)“defect” on the solid surface has been recognised for a long time, and it corresponds to a logarithmically decaying form. However, less attention has been paid to the behaviour of the triple line within the domain of the defect. This was actually studied a few years ago from a theoretical viewpoint, leading to the prediction of an inversion of curvature. Recent experimental work has been concerned with the electrochemical treatment of PTFE, leading to small etched areas of higher wettability with typical widths of 100-300 um. Wetting experiments have been carried out on such solids and the results confirm the general conclusion of inverted curvature of the triple line in the treated zones. However, the “excess wettability” in the treated zones, as evaluated experimentally, was found to be greater than predicted theoretically. Possible causes are discussed.

1419. Callegari, G., A. Calvo, and J.P. Hulin, “Contact line motion: Hydrodynamical or molecular process?,” in Contact Angle, Wettability and Adhesion, Vol. 4, K.L. Mittal, ed., 29-41, VSP, Jul 2006.

An experimental study of the constant velocity displacement of various water/glycerol solutions by air in poly (vinyl chloride)(PVC) capillary tubes is reported. This topic is of particular interest in relation to dewetting processes on surfaces covered by a liquid film. More specifically, variations of the dynamic contact angle with velocity and their relation to the physicochemical properties of the systems studied are investigated. These results and those of other authors are analyzed in the framework of both hydrodynamical and molecular approaches of the dynamic contact-angle problem. These comparisons indicate that either the molecular or the viscous dissipation mechanism may be dominant, depending on the system studied. These results are used to suggest explanations for apparent discrepancies between dewetting velocity measurements in different systems previously reported by the authors.

1418. Zhang, J., and D.Y. Kwok, “Study of contact angles, contact line dynamics and interfacial liquid slip by a mean-field free-energy lattice Boltzmann model,” in Contact Angle, Wettability and Adhesion, Vol. 4, K.L. Mittal, ed., 3-28, VSP, Jul 2006.

We summarize here a mean-field representation of fluid free-energy to a lattice Boltzmann scheme recently proposed for interfacial studies. The interfacial behaviors obtained from this new multi-phase lattice Boltzmann model (LBM) were validated by means of the Laplace equation of capillarity and the capillary wave dispersion relation. Applications of this mean-field LBM to various interfacial studies are reviewed, including wettability on heterogeneous surfaces, self-propelled drop movement, contact line dynamics and solid–liquid interfacial slip. The mean-field LBM simulates systems with better physical reality in terms of solid–liquid interactions and could be an alternative for simulating interfacial phenomena.

1359. Bai, G., and Y. Liu, “Plasma-based surface modification and adhesion enhancement of polyester monofilaments,” Polymeric Materials: Science and Engineering, 51, 708-711, (Jul 2006).

834. Zenkiewicz, M., “New method of analysis of the surface free energy of polymeric materials calculated with Owens-Wendt and Neumann methods,” Polimery, 51, 584-587, (Jul 2006).

A new method of analysis of differences in the surface free energy (SFE) values of a solid, calculated using the methods of Owens-Wendt (OW) and Neumann and two measuring liquids, water and diiodomethane, is presented. The concept of the analysis bases on the differences in SFE, which occur objectively and regardless of both the precision and the performing conditions of the contact angle (CA) measurements. These differences result from utilizing of different mathematical relations between CA and SFE in each of the methods. The results obtained with these two methods are compared with one another over the SFE range common for polymeric materials (20-50 mJ/m 2). It is calculated that the relative difference in SFE between the results from the OW and Neumann methods can reach 19.9 % over this range.

2902. Gao, L., and T.J. McCarthy, “Contact angle hysteresis explained,” Langmuir, 22, 6234-6237, (Jun 2006).

A view of contact angle hysteresis from the perspectives of the three-phase contact line and of the kinetics of contact line motion is given. Arguments are made that advancing and receding are discrete events that have different activation energies. That hysteresis can be quantified as an activation energy by the changes in interfacial area is argued. That this is an appropriate way of viewing hysteresis is demonstrated with examples.

1663. Schussler, J., “Ensuring that folding box seams do not burst,” VR Verpackungs-Rundschau, 56-57, (Jun 2006).

1499. Mount, E.M. III, “Delamination problems,” http://www.vacuumcoatingblog.co.uk, Jun 2006.

1498. Bishop, C.A., “Loss of surface energy,” http://www.vacuumcoatingblog.co.uk, Jun 2006.

1497. Bishop, C.A., “Decay of surface energy for metallized OPP films,” http://www.vacuumcoatingblog.co.uk, Jun 2006.

1496. Bishop, C.A., “Static charge and surface energy,” http://www.vacuumcoatingblog.co.uk, Jun 2006.

1340. Ebnesajjad, S., and C. Ebnesajjad, Surface Treatment of Materials for Adhesion Bonding, William Andrew Inc., Jun 2006.

2184. Wolf, R.A., and A.C. Sparavigna, “Atmospheric plasma for textiles,” R. Technologie Tessili, 46-50, (May 2006).

A recent study has illustrated a sizeable increase in the printing characteristics of nonwovens following atmospheric plasma treatments. The improvement of properties such as wettability, printability and adhesion opens up new application prospects for treated fabrics.

1339. van Oss, C.J., Interfacial Forces in Aqueous Media, 2nd Ed., CRC Press, May 2006.

1186. Cho, J.S., S. Han, K.H. Kim, Y.G. Han, J.H. Lee, et al, “Surface modification of polymers by ion-assisted reactions: An overview,” in Adhesion Aspects of Thin Films, Vol. 2, K.L. Mittal, ed., 105-121, VSP, May 2006.

1181. Bishop, C.A., “More details re plasma treatments,” http://www.vacuumcoatingblog.co.uk, May 2006.

1180. Bishop, C.A., “Lifetime of flame treatment,” http://www.vacuumcoatingblog.co.uk, May 2006.

1177. no author cited, “Member news: Empire Treater Rolls,” AIMCAL News, 31, (May 2006).

1176. no author cited, “Member news: Enercon Dyne-A-Mite,” AIMCAL News, 31, (May 2006).

2052. Ruddy, A.C., G.M. McNally, G. Nersisyan, W.G. Graham, and W.R. Murphy, “The effect of atmospheric glow discharge (APGD) treatment on polyetherimide, polybutyleneterephthalate, and polyamides,” J. Plastic Film and Sheeting, 22, 103-119, (Apr 2006).

Polyamide 6, polyamide 12, polybutyleneterephthalate, and polyetherimide films are plasma treated in an APGD unit using various applied voltages, gas flow rates, frequencies, and dwell times. The results show changes in the surface chemistry (FTIR); the degree of change in dynamic contact angle is found to be dependent on the polymer type, dwell time, and electrical characteristics of the plasma.

2025. Ferrero, F., and R. Bongiovanni, “Improving the surface properties of cellophane by air plasma treatment,” Surface and Coatings Technology, 200, 4770-4776, (Apr 2006).

Air plasma treatment at low pressure was applied to modify the surface of a cellulose film with the aim to improve its wettability, dyeability and adhesion properties. The contact angles of different polar liquids on the treated films show an exponential decay with treatment time at a given power; the power–time reciprocity is followed. The calculated surface tension values exponentially rise to the same maximum value with a decrease of the polar fraction. ATR-FTIR analyses suggest that a cellulose dehydration takes place rather than a surface oxidation. The plasma treatment improves also the cellophane dyeability with typical dyes for cellulose fibers: the results of dye uptake follow the same trend as the surface energy. The bond strength of lap joints of cellophane with LLDPE film shows a strong improvement of the adhesion depending on the duration and the power of treatment. The whole results are consistent with ablation effects like those observed with air corona treatment rather than oxygen plasma.

1670. Roth, J.R., and T.A. Bonds, “The application of a one atmosphere uniform glow discharge plasma (OAUGDP) to roll-to-roll surface energy enhancement and plasma chemical vapor deposition (PCVD) on films and fabrics,” in 15th Annual International TANDEC Nonwovens Conference Proceedings, TANDEC, Apr 2006.

1548. Manges, M., “Plasma treatment for medical device assembly,” Moll Medical, Seagrove Div., Apr 2006.

1208. Dillingham, R.G., and B.R. Oakley, “Surface energy and adhesion in composite-composite adhesive bonds,” J. Adhesion, 82, 407-426, (Apr 2006).

In the absence of weak boundary layers, surface energy can be an excellent indicator of the suitability of a fiber-reinforced composite surface for adhesive bonding. Mechanical surface treatments such as grit blasting are effective and commonly used to prepare composite surfaces, but the roughness introduced by these treatments makes quantification of the surface energy by contact angle methods difficult. This paper shows that the diameter of a small drop of a low-viscosity fluid chosen to have surface tension characteristics very similar to the adhesive can be used as an effective predictor of adhesive bond fracture energy. This technique could form the basis of a sensitive quality assurance tool for manufacturing.

1179. Sabreen, S.R., “Question: Corona discharge and flame surface pretreatment methods,” Plastics Decorating, 46, (Apr 2006).

1178. Sabreen, S.R., “Question: Surface wetting,” Plastics Decorating, 46, (Apr 2006).

1169. Liu, Y., and D. Lu, “Surfcae energy and wettability of plasma-treated polyacrylonitrile fibers,” Plasma Chemistry and Plasma Processing, 26, 119-126, (Apr 2006).

Polyacrylonitrile fibers were treated with a nitrogen glow-discharge plasma. The surfaces of untreated and treated fibers were examined with contact angle measurements, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Surface energy calculations of the fibers were carried out from contact angle measurements using the relationships developed by Fowkes. It is found that plasma treatment causes a reduction in water contact angle on the fiber surfaces. The dispersion component of surface energy changes slightly, while the polar component is increased significantly from 14.6 mN/m to 58.7 mN/m and the total surface energy increase is 139%. The increase of surface energy is mainly caused by the introduction of hydrophilic groups on the fiber surfaces after plasma treatment.

2970. Lai, J., B. Sunderland, J. Xue, et al, “Study on hydrophilicity of polymer surfaces improved by plasma treatment,” Applied Surface Science, 252, 3375-3379, (Mar 2006).

Surface properties of polycarbonate (PC), polypropylene (PP), polyethylene terephthalate (PET) samples treated by microwave-induced argon plasma have been studied with contact angle measurement, X-ray photoelectron spectroscopy (XPS) and scanned electron microscopy (SEM). It is found that plasma treatment modified the surfaces both in composition and roughness. Modification of composition makes polymer surfaces tend to be highly hydrophilic, which mainly depended on the increase of ratio of oxygen-containing group as same as other papers reported. And this experiment further revealed that CDouble BondO bond is the key factor to the improvement of the hydrophilicity of polymer surfaces. Our SEM observation on PET shown that the roughness of the surface has also been improved in micron scale and it has influence on the surface hydrophilicity.

2525. Morsy, F.A., S.Y. Elsayad, A. Bakry, and M.A. Eid, “Surface properties and printability of polypropylene film treated by an air dielectric barrier discharge plasma,” Surface Coatings International, Part B: Coatings Transactions, 89, 49-55, (Mar 2006).

The effect of air dielectric barrier discharge plasma treatment on the chemical structure and morphology of polypropylene (PP)film was studied using UV-VIS (ultraviolet-visible),FT-IR,(Fourier transform infrared),SEM (scanning electron microscopy)and AFM (atomic force microscopy).Polypropylene samples were printed using solvent-based gravure ink.An evaluation of the print quality criteria of the treated PP films included measurement of print density and print gloss.SEM investigated the ink laydown on the modified PP film.The results showed that after a few seconds of plasma treatment,both the surface energy and the surface roughness of the treated PP film increased.There was an increase in the absorbance at the almost-visible range,and C=C and C=O bands were found after the air discharge plasma treatment.A short plasma treatment of 15 seconds was found to bring about a dramatic increase in the print density readings,but a decrease in print gloss.The time of the air discharge plasma treatment was found to have no effect on the print density or print gloss at a high ink film thickness.The results showed that air dielectric barrier discharge plasma treatment,for a few seconds,is effective in printing and is economical for industrial use (this will be studied in detail in future work).

2450. Kwon, O.-J., S.-W. Myung, C.-S. Lee, and H.-S. Choi, “Comparison of the surface characteristics of polypropylene films treated by Ar and mixed gas (Ar/O2) atmospheric pressure plasma,” J. Colloid and Interface Science, 295, 409-416, (Mar 2006).

In an attempt to modify the hydrophobic surface properties of polypropylene (PP) films, this study examined the optimum process parameters of atmospheric pressure plasma (APP) using Ar gas. Under optimized conditions, the effects of a mixed gas (Ar/O2) plasma treatment on the surface-free energy of a PP film were investigated as a function of the O2 content. The polar contribution of the surface-free energy of the PP film increased with increasing O2 content in the gas mixture. However, slightly more oxygen-containing polar functional groups such as CO, CO, and COO were introduced on the PP film surface by the Ar gas only rather than by the Ar/O2 gas mixture. In addition, AFM analysis showed that the Ar plasma treatment of the PP film produced the smoothest surface as a result of the relatively homogeneous etching process.

1907. Elsner, C., M. Lenk, L. Prager, and R. Mehnert, “Windowless argon excimer source for surface modification,” Applied Surface Science, 252, 3616-3624, (Mar 2006).

The article describes applications of a novel windowless argon excimer source for surface modification. Experimental results on etching of polymeric surfaces, degradation of organic surface residues, surface activation and modification of gas permeability and selectivity of polymeric membranes are presented. Moreover, radical formation from the excimer source and surface curing of liquid acrylates are examined. Typical treatment times are in the range of minutes for photolytic decomposition effects and seconds for UV curing effects. The surface modification effects induced by the argon excimer source were analysed by XPS, ESR, IR-spectroscopy, white light reflection spectroscopy, scanning electron microscopy, micro-hardness and permeation measurements.

1278. Mesic, B., M. Lestelius, and G. Engstrom, “Influence of corona treatment decay on print quality in water-borne flexographic printing of low-density polyethylene-coated paperboard,” Packaging Technology and Science, 19, 61-70, (Mar 2006).

The decrease in the corona treatment effect with time and its influence on the flexographic printability of low-density polyethylene-coated paperboard were studied. After corona treatment, sheets were stored in different ways. Some sheets were stored in a laboratory atmosphere, while others were protected from exposure to light, air, moisture and dust in polyethylene bags. The tendency for ink to spread on the surfaces was studied using contact angle measurements. Printability was evaluated as print density, dot gain, uncovered (white) and mottling. The results obtained show that the surface energy of the protected sheets decreased with time, but not as much and not as quickly as that of the unprotected sheets. In the case of the protected sheets, the percentage uncovered areas and mottling remained constant, but for the unprotected sheets they increased with increasing time after the corona treatment. No significant differences were seen in the other print quality measures. Copyright © 2005 John Wiley & Sons, Ltd.
https://onlinelibrary.wiley.com/doi/abs/10.1002/pts.708

1173. Fontelera, J., “Stick with what works: Converters rely on their corona treaters for better ink and coating adhesion,” Converting, 24, 32-35, (Mar 2006).

1172. Inagaki, N., and K. Narushima, “Surface modification of aromatic polyester films for copper metallization,” in PMSE Preprints Volume 94, Spring 2006, Society of Plastics Engineers, Mar 2006.

1039. Butt, H.-J., K. Graf, and M. Kappl, eds., Physics and Chemistry of Interfaces, 2nd Ed., Wiley-VCH, Mar 2006.

3052. Huang, F., Q. Wei, X. Wang, and W. Xu, “Dynamic contact angles and morphology of PP fibres treated with plasma,” Polymer Testing, 25, 22-27, (Feb 2006).

Low-temperature plasma treatment is a kind of environmentally friendly surface modification technology, which has been widely used to modify various materials in many industries. In this study, cold gas plasma was used to treat polypropylene (PP) fibres. The effects of plasma treatment on the surface morphology and wettability of the fibres were characterized using atomic force microscopy (AFM) and dynamic contact angle measurement. The AFM observations revealed the changes in the surface morphology of the fibres caused by plasma treatment. The dynamic contact angles (DCA) were measured based on the Wilhelmy principle. The DCA technique was able to examine the advancing contact angles and receding angles of the fibres. The study revealed that the plasma treatment could considerably reduce both advancing contact angle and receding angle of polypropylene fibre. The surface roughness was the main reason for reducing the receding contact angle, while the advancing contact angle was more related to the surface properties of the fibres.

2137. no author cited, “Reliable solutions - corona treatment from simple to sophisticated,” Flexo & Gravure International, 86-87, (Feb 2006).

1182. Bishop, C.A., “Surface treatment of polymers,” http://www.vacuumcoatingblog.co.uk, Feb 2006.

1167. Schoff, C.K., “Coatings clinic: Surface tension and surface energy,” JCT CoatingsTech, 3, 72, (Feb 2006).

2561. Tendero, C., C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, “Atmospheric pressure plasmas: A review,” Spectrochimica Acta Part B: Atomic Spectroscopy, 961, 2-30, (Jan 2006).

This article attempts to give an overview of atmospheric plasma sources and their applications. The aim is to introduce, in a first part, the main scientific background concerning plasmas as well as the different atmospheric plasma sources (description, working principle). The second part focuses on the various applications of the atmospheric plasma technologies, mainly in the field of surface treatments.Thus this paper is meant for a broad audience: non-plasma-specialized readers will find basic information for an introduction to plasmas whereas plasma spectroscopists who are familiar with analytical plasmas may be interested in the synthesis of the different applications of the atmospheric pressure plasma sources.

 

<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | Next-->