Accudynetest logo

Products available online direct from the manufacturer

ACCU DYNE TEST ™ Bibliography

Provided as an information service by Diversified Enterprises.

total 2872 entries
showing result page 18 of 72, ordered by “Publisher”.

458. Fowkes, F.M., “Role of acid-base interfacial bonding in adhesion,” J. Adhesion Science and Technology, 1, 7-27, (1987).

465. Golander, C.-G., and B.-A. Sultan, “Surface modification of polyethylene to improve its adhesion to aluminum,” J. Adhesion Science and Technology, 2, 125, (1988).

486. Inagaki, N., S. Tasaka, H. Kawai, and Y. Kimura, “Hydrophilic surface modification of polyethylene by NO-plasma treatment,” J. Adhesion Science and Technology, 4, 99-107, (1990).

580. Strobel, J.M., M. Strobel, C.S. Lyons, C. Dunatov, and S.J. Perron, “Ageing of air-corona-treated polypropylene film,” J. Adhesion Science and Technology, 5, 119-130, (1991).

581. Strobel, M., C.S. Lyons, J.M. Strobel, and R.S. Kapaun, “Analysis of air-corona-treated polypropylene and polyethylene terephthalate films by contact angle measurement and X-ray photoelectron spectroscopy,” J. Adhesion Science and Technology, 6, 429-443, (1992) (also in Contact Angle, Wettability and Adhesion: Festschrift in Honor of Professor Robert J. Good, K.L. Mittal, ed., p. 493-507, VSP, Nov 1993).

587. Varughese, K.T., P.P. De, and S.K. Sanyal, “Contact angle behavior of poly(vinyl chloride)/epoxidized natural rubber miscible blends,” J. Adhesion Science and Technology, 3, 541-550, (1989).

619. Strobel, M., M.J. Walzak, J.M. Hill, A. Lin, E. Karbshenski, and C.S. Lyons, “A comparison of gas phase methods of modifying polymer surfaces,” J. Adhesion Science and Technology, 9, 365+, (1994).

817. Kim, J.K., H.S. Kim, and D.G. Lee, “Adhesion characteristics of carbon/epoxy composites treated with low- and atmospheric-pressure plasmas,” J. Adhesion Science and Technology, 17, 1751-1771, (2003).

842. Borch, J., “Thermodynamics of polymer-paper adhesion: A review,” J. Adhesion Science and Technology, 5, 523-541, (1991).

958. Cho, D.L., K.H. Shin, W.-J. Lee, and D.-H. Kim, “Improvement of paint adhesion to a polypropylene bumper by plasma treatment,” J. Adhesion Science and Technology, 15, 653-664, (2001).

964. Cho, C.K., B.K. Kim, and C.E. Park, “The aging effects of repeated oxygen plasma treatment on the surface rearrangement and adhesion of LDPE to aluminum,” J. Adhesion Science and Technology, 14, 1071-1083, (2000).

969. Nakamatsu, J., L.F. Delgado-Aparicio, R. Da Silva, and F. Soberon, “Ageing of plasma-treated poly(tetrafluoroethylene) surfaces,” J. Adhesion Science and Technology, 13, 753-761, (1999).

970. Kawabe, M., S. Tasaka, and N. Inagaki, “Effects of nitrogen plasma treatment of pressure-sensitive adhesive layer surfaces on their peel adhesion behaviour,” J. Adhesion Science and Technology, 13, 573-592, (1999).

977. Della Volpe, C., A. Deimichei, and T. Ricco, “Multiliquid approach to the surface free energy determination of flame-treated surfaces of rubber-toughened polypropylene,” J. Adhesion Science and Technology, 12, 1141-1180, (1998).

979. Seung-Goo, L., K. Tae-Jin, and Y. Tae-Ho, “Enhanced interfacial adhesion of ultra-high molecular weight polyethylene (UHMWPE) fibres by oxygen plasma treatment,” J. Adhesion Science and Technology, 12, 731-748, (1998).

983. Xiao, G.Z., “Effects of solvents on the surface properties of oxygen plasma-treated polyethylene and polypropylene films,” J. Adhesion Science and Technology, 11, 655-663, (1997).

989. Strobel, M., M.C. Branch, M. Ulsh, R.S. Kapuan, S. Kirk, and C.S. Lyons, “Flame surface modification of polypropylene film,” J. Adhesion Science and Technology, 10, 515-539, (Jun 1996).

991. Good, R.J., “Contact angle, wetting, and adhesion: A critical review,” J. Adhesion Science and Technology, 6, 1269-1302, (1992) (also in Contact Angle, Wettability and Adhesion: Festschrift in Honor of Professor Robert J. Good, K.L. Mittal, ed., p. 3-36, VSP, Nov 1993).

993. Corn, S., K.P. Vora, M. Strobel, and C.S. Lyons, “Enhancement of adhesion to polypropylene films by chlorotrifluoromethane plasma treatment,” J. Adhesion Science and Technology, 5, 239-245, (1991).

1007. Strobel, M., N. Sullivan, M.C. Branch, V. Jones, J. Park, M. Ulsh, et al., “Gas-phase modelling of impinging flames used for the flame surface modification of polypropylene film,” J. Adhesion Science and Technology, 15, 1-21, (2001).

1042. Zeiler, T., S. Kellermann, and H. Muenstedt, “Different surface treatments to improve the adhesion of polypropylene,” J. Adhesion Science and Technology, 14, 619-634, (2000).

1077. Wu, D.Y., W.S. Gutowski, S. Li, and H.J. Griesser, “Ammonia plasma treatment of polyolefins for adhesive bonding with a cyanoacrylate adhesive,” J. Adhesion Science and Technology, 9, 501-525, (1995).

1194. Banik, I., K.S. Kim, Y.I. Yun, D.H. Kim, C.M. Ryu, and C.E. Park, “Inhibition of aging in plasma-treated high-density polyethylene,” J. Adhesion Science and Technology, 16, 1155-1169, (2002).

1197. Canal, C., R. Molina, E. Bertran, and P. Erra, “Wettability, ageing and recovery process of plasma-treated polyamide 6,” J. Adhesion Science and Technology, 18, 1077-1089, (2004).

1199. Cepeda-Jiminez, C.M., R. Torregrosa-Macia, and J.M. Martin-Martinez, “Surface modifications of EVA copolymers induced by low pressure RF plasmas from different gases and their relation to adhesion properties,” J. Adhesion Science and Technology, 17, 1145-1159, (2003).

1201. Chattopadhyay, S., R.N. Ghosh, T.K. Chaki, and A.K. Bhowmick, “Surface analysis and printability studies on electron beam-irradiated thermoplastic elastomeric films from LDPE and EVA blends,” J. Adhesion Science and Technology, 15, 303-320, (2001).

1204. Chibowski, E., A. Ontiveros-Ortega, and R. Perea-Carpio, “On the interpretation of contact angle hysteresis,” J. Adhesion Science and Technology, 16, 1367-1404, (2002).

1206. Della Volpe, C., and S. Siboni, “Acid-base surface free energies of solids and the definition of scales in the Good-van Oss-Chaudhury theory,” J. Adhesion Science and Technology, 14, 235-272, (2000) (also in Apparent and Microscopic Contact Angles, J. Drelich, J.S. Laskoski, and KL. Mittal, eds., p. 171-208, VSP, Jun 2000).

1207. Della Volpe, C., S. Siboni, D. Maniglio, M. Morra, C. Cassinelli, et al, “Recent theoretical and experimental advancements in the applications of the van Oss-Chaudhury-Good acid-base theory to the analysis of polymer surfaces, II: Some peculiar cases,” J. Adhesion Science and Technology, 17, 1425-1456, (2003).

1209. Dilsiz, N., “Plasma surface modification of carbon fibers: A review,” J. Adhesion Science and Technology, 14, 975-987, (2000).

1211. Drelich, J., J. Nalaskowski, A. Gosiewska, E. Beach, and J.D. Miller, “Long-range attractive forces and energy barriers in de-inking flotation: AFM studies of interactions between polyethylene and toner,” J. Adhesion Science and Technology, 14, 1829-1843, (2000).

1217. Inagaki, N., K. Narushima, and A. Yokoi, “Surface modification of PET films by a combination of vinylphthalimide deposition and Ar plasma irradiation,” J. Adhesion Science and Technology, 18, 1517-1528, (2004).

1218. Inagaki, N., K. Narushima, Y. Tsutsui, and Y. Ohyama, “Surface modification and degradation of poly(lactic acid) films by Ar-plasma,” J. Adhesion Science and Technology, 16, 1041-1054, (2002).

1220. Jaehnichen, K., J. Frank, D. Pleul, and F. Simon, “A study of paint adhesion to polymeric substrates,” J. Adhesion Science and Technology, 17, 1635-1654, (2003).

1221. Kim, B.K., K.S. Kim, C.E. Park, and C.M. Ryu, “Improvement of wettability and reduction of aging effect by plasma treatment of low-density polyethylene with argon and oxygen mixtures,” J. Adhesion Science and Technology, 16, 509-521, (2002).

1222. Kim, B.K., K.S. Kim, K. Cho, and C.E. Park, “Retardaton of the surface rearrangement of O2 plasma-treated LDPE by a two-step temperature control,” J. Adhesion Science and Technology, 15, 1805-1816, (2001).

1223. Koh, S.K., J.S. Cho, K.H. Kim, S. Han, and Y.W. Beag, “Altering a polymer surface chemical structure by an ion-assisted reaction,” J. Adhesion Science and Technology, 16, 129-142, (2002).

1226. Kwok, D.Y., and A.W. Neumann, “Contact angle measurements and interpretation: Wetting behavior and solid surface tension for poly(alkyl methacrylate) polymers,” J. Adhesion Science and Technology, 14, 719-743, (2000).

1227. Landete-Ruiz, M.D., J.A. Martinez-Diez, M.A. Rodriguez-Perez, A. Miguel, et al, “Improved adhesion of low-density polyethylene/EVA foams using different surface treatments,” J. Adhesion Science and Technology, 16, 1073-1101, (2002).

1229. Lee, L.-H., “The gap between the measured and calculated liquid-liquid interfacial tensions derived from contact angles,” J. Adhesion Science and Technology, 14, 167-185, (2000).

 

<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | Next-->