Accudynetest logo

Products available online direct from the manufacturer

ACCU DYNE TEST ™ Bibliography

Provided as an information service by Diversified Enterprises.

3040 results returned
showing result page 12 of 76, ordered by

2729. Cohen, E.D., “Coating concepts: What solution properties need to be controlled for effective web coating?,” Converting Quarterly, 8, 18-19, (Apr 2018).

2730. Cohen, E.D., “Substrate properties required for quality web-coated products,” Converting Quarterly, 8, 58-61, (Apr 2018).

1947. Collaud Coen, M., S. Nowak, L. Schlapbach, M. Pisinger, and F. Stucki, “Plasma treatment of polyacetal-copolymer, polycarbonate, polybutylene terephthalate, and nylon 6,6 surfaces to improve the adhesion of ink,” J. Adhesion, 53, 201-216, (Oct 1995).

Polyacetal-copolymer (POMB), polycarbonate (PC), polybutylene terephthalate (PBT), and nylon 6, 6 (PA6, 6) have been treated in an electron cyclotron resonance (ECR) plasma chamber to improve their adhesion properties towards ink. The chemical composition, the surface free energy, and the macroscopic adhesion have been studied by X-ray photoelectron spectroscopy (XPS), contact angle measurements, cross-cut tests, and the Scotch Tape test. Their dependence on the neutral gas, the treatment time, the pressure, and the ageing in air have been investigated. The XPS results reveal that the plasma treatment allows one to clean the surface and, if reactive gases are used, to incorporate new chemical species. The static and dynamic contact angles decrease with the plasma treatment and continue to decrease after contact with air. Very slow hydrophobic recovery is visible in the advancing contact angle, whereas the receding contact angle remains non-measurable even after more than a week of air exposure. Lower pressures and longer treatment times (120 s) lead to better macroscopic adhesion and reproducibility. For optimal treatment conditions (0.5 Pa, 120s N2 plasma treatment time), the improvement of the adhesion remains excellent after seven days exposure of the sample in air.

1904. Collaud, M., P. Groening, S. Nowak, and L. Schlapbach, “Plasma treatment of polymers: The effect of the plasma parameters on the chemical, physical, and morphological states of the polymer surface and on the metal-polymer surface interface,” J. Adhesion Science and Technology, 8, 1115-1127, (1994) (also in Polymer Surface Modification: Relevance to Adhesion, K.L. Mittal, ed., p. 87-100, VSP, May 1996).

835. Collaud, M., S. Nowak, O.M. Kuttel, and L. Schlapbach, “Enhancement of the sticking coefficient of Mg on polypropylene by in situ ECR-RF Ar and N2 plasma treatments,” J. Adhesion Science and Technology, 8, 435-453, (1994) (also in Plasma Surface Modification of Polymers: Relevance to Adhesion, M. Strobel, C.S. Lyons, and K.L. Mittal, eds., p. 255-274, VSP, Oct 1994).

443. Colligan, J.S., W.A. Grant, and J.L. Whitton, eds., Technological Aspects of Surface Treatment and Analysis, Pergamon Press, 1984.

64. Collins, A.G.S., A.C. Lowe, and D. Nicholas, “An analysis of PTFE surfaces modified by exposure to glow discharges,” European Polymer J., 9, 1173-1185, (1973).

A detailed analysis is reported of the chemical and physical modifications which occur to PTFE surfaces exposed to glow discharges in ammonia gas and in air. The analytical methods used were infra-red attenuated total reflectance and differential attenuated total reflectance spectroscopy, X-ray photoelectron spectroscopy, contact angle measurements and scanning electron microscopy. The suitability for bonding with adhesives and the stability of the modified surfaces to attack by oxidizing acids are also reported.

444. Collins, W.M., “Classical review of corona treatment,” in 1983 Coextrusion Conference Proceedings, 47+, TAPPI Press, 1983.

1400. Collins, W.M., “Recent technological advances in corona treating,” in 1981 Paper Synthetics Conference Proceedings, 129, TAPPI Press, 1981.

1043. Colvin, R., “Novel plasma method treats polymer rather than part,” Modern Plastics Intl., 29, 33-34, (Apr 1999).

2769. Combe, E.C., B.A. Owen, and J.S. Hodges, “A protocol for determining the surface free energy of dental materials,” Dental Materials, 20, 262-268, (Mar 2004).

The purpose of this study was to develop a standard methodology for measuring the surface free energy (SFE), and its component parts, of dental biomaterials. The contact angle of each of four samples of two materials--low density polyethylene and poly(methyl methacrylate)--was measured three times in each of six liquids (1-bromonaphthalene, diiodomethane, ethylene glycol, formamide, glycerol and distilled water). Critical surface tension estimates were obtained from Zisman plots. Data were then analyzed by the least-squares method to estimate the components of SFE. Estimates were also made for each of 12 liquid triplets, and by maximum likelihood and Bayesian analyses. The use of liquid triplets could yield misleading estimates of the components of SFE. A testing protocol is suggested in which multiple test liquids are used, and multiple methods of statistical analyses employed. SFE is important, in that high SFE is desirable when adhesion is required, but undesirable if plaque resistance is needed. Methodology that avoids some of the limitations of existing studies has been proposed.

1420. Combellas, C., A. Fuchs, F. Kanoufi, and M.E.R. Shanahan, “The detailed structure of a perturbed wetting triple line on modified PTFE,” in Contact Angle, Wettability and Adhesion, Vol. 4, K.L. Mittal, ed., 43-59, VSP, Jul 2006.

The essential form of an initially straight wetting triple line perturbed by the presence of a (higher surface free energy)“defect” on the solid surface has been recognised for a long time, and it corresponds to a logarithmically decaying form. However, less attention has been paid to the behaviour of the triple line within the domain of the defect. This was actually studied a few years ago from a theoretical viewpoint, leading to the prediction of an inversion of curvature. Recent experimental work has been concerned with the electrochemical treatment of PTFE, leading to small etched areas of higher wettability with typical widths of 100-300 um. Wetting experiments have been carried out on such solids and the results confirm the general conclusion of inverted curvature of the triple line in the treated zones. However, the “excess wettability” in the treated zones, as evaluated experimentally, was found to be greater than predicted theoretically. Possible causes are discussed.

628. Comyn, J., “Keynote overview on surface treatment for adhesive bonding,” Construction and Building Materials, 2, 210-215, (Dec 1988).

Improper or inadequate surface treatment is one of the commonest causes of failure in adhesive bonding, but the selection of a good surface treatment can bring marked improvements in the wet durability of adhesive bonds to metals and glasses, and can permit the bonding of otherwise unbondable materials such as polytetrafluoroethylene (ptfe) and the polyolefins. Untreated surfaces may be unsatisfactory for adhesive bonding because they may be contaminated, may lack polar chemical groups or the interface they make with an adhesive may be susceptible to hydrolysis.

1366. Comyn, J., L. Mascia, G. Xiao, and B.M. Parker, “Plasma-treatment of polyetheretherketone (PEEK) for adhesive bonding,” Intl. J. Adhesion and Adhesives, 16, 97-104, (May 1996).

Polyetheretherketone (PEEK) has been treated with oxygen-, air-, argon- and ammonia-plasmas, which greatly improve adhesion to an epoxide film adhesive. Treated surfaces can be stored under laboratory conditions for up to 90 days without significant loss of the improved adhesion properties. Contact angle measurements show that the surface energy of PEEK is much increased by plasma-treatment. X-ray photoelectron spectroscopy shows that the plasmas increase the amounts of oxygen and in some cases the amounts of nitrogen, and that new surface groups include -OH and -CO-. Wiping treated surfaces with acetone can reverse the effects of plasma-treatment.

1205. Comyn, J., L. Mascia, X. G., and B.M. Parker, “Corona-discharge treatment of polyetheretherketone (PEEK) for adhesive bonding,” Intl. J. Adhesion and Adhesives, 16, 301-304, (Nov 1996).

65. Conners, T.A., and S. Banerjee, eds., Surface Analysis of Paper, CRC Press, Jul 1995.

2484. Coombes, N., “Vetaphone, along with Coating Plasma Industrie (CPI) have created EASI-plasma, a new product for the coating, laminating and printing industries,”, 2010.

2629. Coombes, N., “Corona control: Learning to understand the treatment basics,” Flexo, 41, 26-27, (Feb 2016).

66. Coopes, I.H., and K.J. Gifkins, “Gas plasma treatment of polymer surfaces,” J. Macromolecular Science, A17, 217-226, (1982).

The modification of polymer surfaces by gas plasma treatment is reviewed. The two regimes of major interest are radio-frequency at low pressure (about 1 torr) and corona discharge at atmospheric pressure. The reactions produced by plasmas at polymer surfaces are due to both radiation and chemically active species created by electron bombardment. The major changes produced are in wettability, molecular weight, chemical composition, and surface morphology. The mechanisms of plasma polymerization and the properties of polymers produced by this technique are described. Finally, a brief outline is given of the industrial applications of plasma techniques.

67. Corbin, G.A., R.E. Cohen, and R.F. Baddour, “Kinetics of polymer surface fluorination: elemental and plasma-enhanced reactions,” Polymer, 23, 1546-1548, (1982).

E.s.c.a. spectra of surface fluorinated polyethylene, poly(vinyl fluoride), and poly(vinylidene fluoride) are reported. Two reaction environments were used in this study: exposure to elemental fluorine and immersion in a glow discharge plasma. The systematic variation of fluorine composition in the polymer phase is shown to have a dramatic effect on the kinetics of the elemental reaction and little effect in the plasma reaction.

68. Cormia, R.D., “Surface Modification and Characterization of Biomaterials,” Surface Sciences, 1990.

935. Cormia, R.D., “Use plasmas to re-engineer your advanced materials,” Research & Development, (Jul 1990).

993. Corn, S., K.P. Vora, M. Strobel, and C.S. Lyons, “Enhancement of adhesion to polypropylene films by chlorotrifluoromethane plasma treatment,” J. Adhesion Science and Technology, 5, 239-245, (1991).

The surface chemical modification of polypropylene by CF3Cl plasma treatment was studied by ESCA, wettability measurements, and pressure-sensitive-adhesive performance tests. Improved adhesion was observed on polypropylene treated under CF3Cl plasma conditions that maximized Cl and minimized F and O incorporation. Polypropylene treated using CF3Cl plasmas had a high dispersive component of surface energy, as indicated by low diiodomethane contact angles. High dispersive energy is characteristic of chlorinated surfaces, and may contribute to the improved adhesion.

832. Correia, N.T., J.J. Moura-Ramos, B.J.V. Saramago, and J.C.G. Calado, “Estimation of the surface tension of a solid: Application to a liquid crystalline polymer,” J. Colloid and Interface Science, 189, 361-369, (May 1997).

The different methods available in the literature to calculate the surface tension of a solid from contact angle measurements are discussed and compared. The discussion is based on the contact angles of water, glycerol, and diiodomethane measured at 20°C on the surface of a side-chain liquid crystalline polymer. Some discrepancies exist among the results obtained with the different methods, mainly between the values yielded by Neumann's equation and those obtained with approaches that postulate the decomposition of the surface tension into several terms associated with different types of molecular interactions (methods of Owens and Wendt and of Good and van Oss). The physicochemical basis of these various treatments is discussed.

1697. Costanzo, P.M., R.F. Giese, and C.J. van Oss, “Determination of the acid-base characteristics of clay mineral surfaces by contact angle measurements - Implication for the adsorption of organic solutes from aqueous media,” J. Adhesion Science and Technology, 4, 267-275, (1990).

The apolar and the polar (electron-acceptor and electron-donor, or Lewis acid-base) surface tension components and parameters of solid surfaces can be determined by contact angle measurements using at least three different liquids, of which two must be polar. With swelling clay minerals (e.g. smectite clay minerals), smooth contiguous membranes can be fabricated, upon which contact angles can be measured directly. With non-swelling clay minerals (e.g. talc), contact angles can be determined by wicking, i.e. by the measurement of the rate of capillary rise of the liquids in question through thin layers of clay powder adhering to glass plates. The apolar and polar (acid-base) surface tension components and parameters thus found for various untreated and quaternary ammonium base-treated clays allowed the determination of the net interfacial free energy of adhesion of human serum albumin onto the various clay particle surfaces immersed in water. The free energies of adhesion, thus found, correlate well with the experimentally observed degree of adsorption of human serum albumin.

2948. Couch, M., W. Lee, and M. Plantier, “Best practices for integrating plasma and flame surface treaters,” Plastics Decorating, 28-30, (Apr 2023).

2672. Couchie, M., “Tips for selecting coating chemistries for hard-to-coat plastics,” Plastics Engineering, 72, 40-43, (Nov 2016).

2428. Courval, G.J., D.G. Gray, and D.A.I. Goring, “Chemical modification of polyethylene surfaces in a nitrogen corona,” J. Polymer Science: Polymer Letters Edition, 14, 231-235, (Apr 1976).

946. Cox, E.O., “Should water or UV be in your clean air future?,” Flexo, 19, 12-16, (Sep 1994).

2764. Cramm, R.H., “The influence of processing conditions on the hot tack of polyethylene extrusion coatings,” in 1988 Polymers, Laminations and Coatings Conference Proceedings, 35-39, TAPPI Press, 1988 (also in TAPPI J., V. 72, p. 185-189, Mar 1989).

445. Cramm, R.H., and D.V. Bibee, “Theory and practice of corona treatment for improvement of adhesion,” in 1981 Paper Synthetics Conference Proceedings, 1-11, TAPPI Press, 1981 (also in TAPPI J., V. 65, p. 75-78, Aug 1982).

1073. Critchlow, G.W., C.A. Cottam, D.M. Brewis, and D.C. Emmony, “Further studies into the effectiveness of carbon dioxide-laser treatment of metals for adhesive bonding,” Intl. J. of Adhesion and Adhesives, 17, 143-150, (May 1997).

The effect of CO2-laser treatment on the wettability of mild steel is presented. In addition, data are presented on the initial joint strengths and durability of joints formed between a single-part epoxide and both mild steel and aluminium. A large increase in stressed durability performance was observed with the laser-treated aluminium compared with degreased-only controls. The laser treatment was shown to efficiently remove the organic contamination from the metallic substrates. Auger analysis showed that the laser interacts more with the mild steel than the aluminium adherends, to produce a relatively thick surface oxide. The changes to the mild steel surface introduced by the CO2-laser treatment facilitate an durability trials was greater with the laser-treated adherends than with degreased-only controls.

1749. Crocker, G.J., “Elastomers and their adhesion,” Rubber Chemistry and Technology, 42, 30+, (Feb 1969).

1470. Crolius, V.G., W.E. Eberling, and R.C. Parsons, “The effect of processing variables on the adhesion strength of polyethylene coated aluminum foil,” TAPPI J., 45, 351-356, (May 1962).

2530. Crutchley, E.B., Innovation Trends in Plastics Decoration and Surface Treatment: Decorative Effects on Moulded Plastics, Rapra Publishing, 2014.

1953. Cueff, R., G. Baud, J.P. Besse, M. Jacquet, and M. Benmalek, “Surface free energy modification of PET by plasma treatment - influence on adhesion,” J. Adhesion, 42, 249-254, (Oct 1993).

Different cold plasmas have been used to treat the surface of polyethylene terephtalate (PET) in order to improve the adhesion of alumina thin films deposited by RF sputtering. The influence of these treatments on the surface free energy of the polymer is shown by a study of wettability. ESCA analysis of the PET surface suggests that chemical changes occur as the polymer is plasma treated.

The adhesion of alumina films on PET is studied by using tensile testing. The results show that the surface treatment of the PET by a slightly oxidizing plasma, such as carbon dioxide, increases by a factor of 1.7 the adhesion of alumina coatings.

1640. Cui, N.-Y., C.A. Anderson, B.J. Meenan, and N.M.D. Brown, “Surface oxidation of a Melinex 800 PET polymer material modified by an atmospheric dielectric barrier discharge studied using X-ray photoelectron spectroscopy and contact angle measurement,” Applied Surface Science, 253, 3865-3871, (Feb 2007).

Surface properties of a Melinex 800 PET polymer material modified by an atmospheric-pressure air dielectric barrier discharge (DBD) have been studied using X-ray photoelectron microscopy (XPS) and contact angle measurement. The results show that the material surface treated by the DBD was modified significantly in chemical composition, with the highly oxidised carbon species increasing as the surface processing proceeds. The surface hydrophilicity was dramatically improved after the treatment, with the surface contact angle reduced from 81.8° for the as-supplied sample to lower than 50° after treatment. Post-treatment recovery effect is found after the treated samples were stored in air for a long period of time, with the ultimate contact angles, as measured, being stabilised in the range 58–69° after the storage, varying with the DBD-treatment power density. A great amount of the C–O type bonding formed during the DBD treatment was found to be converted into the CDouble BondO type during post-treatment storage. A possible mechanism for this bond conversion has been suggested.

3001. Cui, N.-Y., D.J. Upadhyay, C.A. Anderson, and N.M.D. Brown, “Study of the surface modification of a nylon-6,6 film processed in an atmospheric pressure air dielectric barrier discharge,” Surface and Coatings Technology, 192, 94-100, (Mar 2005).

A Nylon-6,6 film has been treated using an atmospheric pressure air dielectric barrier discharge (DBD). The resultant surface modifications were studied using X-ray photoelectron spectroscopy (XPS), contact angle measurement and secondary ion mass spectrometry (SIMS). The surface oxidation arising in the DBD discharge was found to arise in two stages: in the first stage, the creation of the carbon sites singly bonded to oxygen is dominant, the second stage leads to further conversion of such lightly oxidised carbons to those more heavily oxidised. The marked increase found in the hydrophilicity of the surface post-treatment is in the main believed to be associated with the earlier outcome. Partial recovery of the surface contact angle values is found for the treated samples following extended storage in ambient air. The final contact angle obtained for the treated samples was ∼50°, still reduced significantly from that of 83.5° for the untreated material.

1367. Cui, N.Y., and N.M.D. Brown, “Modification of the surface properties of a polypropylene (PP) film using an air dielectric barrier discharge plasma,” Applied Surface Science, 189, 31-38, (Apr 2002).

Modification of the surface properties of a polypropylene (PP) film using an air dielectric barrier discharge has been studied using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contact angle measurement. The atmospheric pressure air discharge is found to modify the PP surface in both morphology and composition, as expressed in the following outcomes: the spherulitic features of the surface of the pristine PP film change into randomly-shaped surface protrusions, with the surface roughness increasing as the processing time is extended; heavily oxidized carbon species are found on the plasma-processed surface and the contact angle is also reduced dramatically from 93.7° for the untreated surface to 53.8° post-treatment. After long-term storage in ambient air, the much lowered surface contact angle of the processed PP film is found to in part recover. Effective plasma-induced chemical etching appears to equilibrate after 25% of the surface carbon is oxidized. The CH3 functionalities in the PP are believed to be oxidized preferentially by the air discharge plasma.

2748. Culbertson, E., “Metal adhesion to PET film,” in 2007 PLACE Conference Proceedings, 243-246, TAPPI Press, Sep 2007.


<-- Previous | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | Next-->