Surface Energy Data for PTFE: Polytetrafluoroethylene, CAS # 9002-84-0

Source ^(a)	Mst. Type ^(b)	Data©	Comments ^(d)
Fox, 1950 ⁽⁹⁾	Critical ST	$\gamma_c = 18.5 \text{ mJ/m}^2; 20^{\circ}\text{C}$	Test liquids not known.
Ellison, 1954 [®]	Critical ST	$\gamma_{c} = 18 \text{ mJ/m}^{2}; 20^{\circ}\text{C}$	Various test liquids.
Fowkes, 1964 ⁽⁷³⁾	Critical ST	$\gamma_c = 19.5 \text{ mJ/m}^2$; no temp cited	Test liquids not known.
Hamilton, 1972 ^(<u>74</u>)	Critical ST	$\gamma_c = 18 \text{ mJ/m}^2$; no temp cited	Test liquids not known.
Wu, 1982 ^{(<u>46)</u>}	Critical ST	$\gamma_{c} = 19 \text{ mJ/m}^{2}; 20^{\circ}\text{C}$	Test liquids not known.
Markgraf, 2005 ⁶²⁾	Critical ST	$\gamma_c = 19-20 \text{ mJ/m}^2$; no temp cited	Test liquids not known.
Fox, 1950 ⁽⁹⁾	Contact angle	$\theta_{W}^{Y} = 108^{\circ}; 20^{\circ}C$	Samples pressed against plate glass at 150°C, boiled in nitric– sulfuric acid, and triple rinsed in distilled water.
Owens, 1969 ⁽¹⁵⁵⁾	Contact angle	$\theta_{W}^{Y} = 108^{\circ}$; no temp cited	
Dann, 1970 ⁽⁹⁴⁾	Contact angle	$\theta_{W}^{A} = 112^{\circ}; 25^{\circ}C$	Sessile drop method; surface cleaned with detergent and rinsed with distilled water.
Hu, 1970 ⁽²³³⁾	Contact angle	$\theta_{W}^{A} = 98^{\circ}$; no temp cited	
Kaelble, 1971 ^(<u>104</u>)	Contact angle	$\theta_{W}^{Y} = 117^{\circ}; 22^{\circ}C$	Sessile drop method; surface cleaned with detergent and rinsed with distilled water.
Collins, 1973 ⁽⁶⁹⁾	Contact angle	$\theta_{W}^{A} = 109^{\circ}$; no temp cited	By sessile drops on tiltable stage.
El Shimi, 1974 ⁽¹⁵⁶⁾	Contact angle	$\theta_{W}^{''} = 112^{\circ}$; no temp cited	
Tamai, 1977 ⁽¹⁵⁹⁾	Contact angle	θ_{W}^{n} = 114°; no temp cited	
Moshonov, 1980 ⁽¹¹⁸⁾	Contact angle	$\theta_W^{Y} = 104^{\circ}$; no temp cited	Measured 60 secs. after application of water droplet; surface cleaned with isopropanol at 60°C and rinsed with methanol.
Penn, 1980 ⁽¹⁵⁷⁾	Contact angle	$\theta_{W}^{Y} = 112^{\circ}$; no temp cited	
Omenyi, 1981 ^(<u>178</u>)	Contact angle	$\theta_{\rm W}^{\rm A} = 104^{\circ}; 20^{\circ}{\rm C}$	
Wu, 1982 ⁽²⁷⁾	Contact angle	$\theta_{W}^{A} = 109^{\circ}, \ \theta_{W}^{R} = 106^{\circ} \ d\theta_{W} = 3^{\circ}; \ 20^{\circ}C$	
Busscher, 1983(158)	Contact angle	$\theta_{W}^{Y} = 116^{\circ}$; no temp cited	
Strobel, 1985 ⁽⁶⁸⁾	Contact angle	$\theta_{W}^{A} = 121^{\circ}$; no temp cited	Commercial grade film, supplied by 3M Company.
Guiseppe, 1986 ⁽⁷⁷⁾	Contact angle	$\theta_{W}^{Y} = 112^{\circ}$; no temp cited	
Janczuk, 1989 ⁽¹⁰⁶⁾	Contact angle	$\theta_{W}^{Y} = 111^{\circ}; 20^{\circ}C$	Polished, then triple boiled in HCl solution and rinsed with distilled water.
Sperati, 1989 ⁽²²²⁾	Contact angle	$\theta_{W}^{A} = 116^{\circ}, \ \theta_{W}^{R} = 92^{\circ} \ d\theta_{W} = 24^{\circ};$ no temp cited	
Egitto, 1990 ⁽⁶⁵⁾	Contact angle	$\theta_{W}^{Y} = 116^{\circ}$; no temp cited	
Yasuda, 1994 ⁽¹⁶⁰⁾	Contact angle	$\theta_{W}^{Y} = 100^{\circ}$; no temp cited	
Owen, 1996 ⁽¹³⁶⁾	Contact angle	$\theta_{W}^{A} = 108^{\circ}$; no temp cited	
Brewis, 1998 ⁽¹⁵³⁾	Contact angle	$\theta_{W}^{A} = 106^{\circ}, \ \theta_{W}^{R} = 90^{\circ} \ d\theta_{W} = 16^{\circ};$ no temp cited	
Cho, 2000 ⁽⁹⁹⁾	Contact angle	$\theta_{W}^{Y} = 100^{\circ}$; no temp cited	Measured by sessile drop method.
Grundke, 2000 ⁽²⁵⁶⁾	Contact angle	$\theta_{W}^{\gamma} = 104^{\circ}$; no temp cited	Measured by ADSA.
Starov, 2000 ⁽²⁸²⁾	Contact angle	$\theta_{W}^{Y} = 105^{\circ}$; no temp cited	PTFE film, cleaned with alcohol and water, soaked in $50^\circ\mathrm{C}$

			pure nitrogen.
Owens, 1969 ⁽¹⁵⁵⁾	Contact angle	$\gamma_{s} = 19.1 \text{ mJ/m}^{2} (\gamma_{s}^{d} = 18.6, \gamma_{s}^{p} = 0.5);$	Test liquids: water and diiodomethane, by geometric mean
		no temp cited	equation.
Dann, 1970 ⁽⁹⁴⁾	Contact angle	$\gamma_{s}^{d} = 21 \text{mJ/m}^{2}; 25^{\circ}\text{C}$	Various test liquids (extrapolated value).
Kaelble, 1971(104)	Contact angle	$\gamma_s = 18.0 \text{ mJ/m}^2 (\gamma_s^{d} = 16.9, \gamma_s^{p} = 1.1); 22^{\circ}\text{C}$	From contact angles with various test liquids.
Wu, 1971 ⁽²⁹⁾	Contact angle	$\gamma_{s} = 22.5 \text{ mJ/m}^{2} (\gamma_{s}^{d} = 20.5, \gamma_{s}^{p} = 2.0); 20^{\circ}\text{C}$	Test liquids: water and diiodomethane, by harmonic mean equation.
Kitazaki, 1972 ⁽¹⁹¹⁾	Contact angle	$\begin{split} \gamma_s &= 21.5 \ mJ/m^2 \ (\gamma_s{}^d = 19.4, \ \gamma_s{}^p = 2.1); \\ no \ temp \ cited \end{split}$	Various test liquids; original results split polar component into hydrogen- and non-hydrogen bonding parameters.
Wu, 1979 ^{(<u>45)</u>}	Contact angle	$\gamma_{\rm c} = 22.6 \text{ mJ/m}^2$; 20°C	Test liquids not known; calculated by the equation of state method.
Busscher, 1981 ⁽⁷²⁾	Contact angle	$\begin{split} \gamma_{s} &= 22.1 \ mJ/m^{2} \ (\gamma_{s}^{\rm d} = 22.1, \ \gamma_{s}^{\rm p} = 0.0) ; \\ no \ temp \ cited \end{split}$	Test liquids: water and propanol.
Omenyi, 1981 ^(<u>178</u>)	Contact angle	$\gamma_{\rm s} = 20.0 \text{ mJ/m}^2; 20^{\circ}\text{C}$	Test liquids not known.
Janczuk, 1989 ⁽¹⁰⁶⁾	Contact angle	$\gamma_{s}^{s} = 21.8 \text{ mJ/m}^{2} (\gamma_{s}^{d} = 21.7; \gamma_{s}^{p} = 0.05);$ no temp cited	Various test liquids, by geometric mean equation.
Janczuk, 1989 ⁽¹⁰⁸⁾	Contact angle	$\gamma_{s} = 25.0 \text{ mJ/m}^{2} (\gamma_{s}^{d} = 25.0; \gamma_{s}^{p} = 0.0);$ no temp cited	Various test liquids, by harmonic-geometric mean equation.
Janczuk, 1989 ⁽¹⁰⁸⁾	Contact angle	$\gamma_{s} = 25.8 \text{ mJ/m}^{2} (\gamma_{s}^{d} = 25.8; \gamma_{s}^{p} = 0.0);$ no temp cited	Various test liquids, by harmonic mean equation.
Janczuk, 1990 ⁽¹⁰⁵⁾	Contact angle	$\gamma_s = 20.6 \text{ mJ/m}^2$; no temp cited	Test liquids: water and diiodomethane.
Janczuk, 1990 ⁽¹⁰⁵⁾	Contact angle	$\gamma_{\rm s} = 21.4 {\rm mJ/m^2}$; no temp cited	Averaged over 28 test liquids.
Spelt, 1992 ⁽⁸⁸⁾	Contact angle	$\gamma_{\rm c}^{\rm s} = 20.0 \text{ mJ/m}^2$; 23°C	Test liquids not known; calculated by the equation of state method.
Morra, 1999 ^{(<u>134)</u>}	Contact angle	$\gamma_s = 20.1 \text{ mJ/m}^2 (\gamma_s^{LW} = 20.1, \gamma_s^{AB} = 0.0, \gamma_s^* = 0.0, \gamma_s^* = 0.0); \text{ no temp cited}$	Test liquids not known; acid-base analysis based on reference values for water of γ^{+} = 48.5 mJ/m ² and γ = 11.2 mJ/m ² .
Chang, 2000 ⁽¹⁶²⁾	Contact angle	$\gamma_s = 17.0 \text{ mJ/m}^2$; no temp cited	
Grundke, 2000 ⁽²⁵⁶⁾	Contact angle	$\gamma_s = 20.1 \text{ mJ/m}^2$; no temp cited	
Della Volpe, 2000 ⁽¹⁶³⁾	Contact angle	$\gamma_s = 22.2 \text{ mJ/m}^2$; no temp cited	Re-calculated from data produced by Janczuk, 1990 ⁽¹⁰⁵⁾ .
Schoff, 2003 ⁽²⁶³⁾	Contact angle	$\gamma_{s} = 21.5 \text{ mJ/m}^{2} (\gamma_{s}^{LW} = 19.6, \gamma_{s}^{AB} = 1.9, \gamma_{s}^{+} = 0.3, \gamma_{s}^{-} = 3.2); \text{ no temp cited}$	Test liquids not known; acid-base analysis.
Dettre, 1967 ⁽⁴⁰⁾	From polymer melt	$\gamma_{s} = 21.5 \text{ mJ/m}^{2}; 20^{\circ}\text{C}$	Direct measurement of polymer melt extrapolated to 20°C; molecular formula $C_{21}F_{44}$; $M_n = 1088$.
Dettre, 1969 ⁽²⁴⁶⁾	From polymer melt	$\gamma_s = 19.3 \text{ mJ/m}^2$; 20°C	Direct measurement of polymer melt extrapolated to 20°C; $M_n = 1038$.
Wu, 1971 ⁽²⁹⁾	From polymer melt	$\gamma_{\rm s} = 26.5 \text{ mJ/m}^2$; 20°C	Direct measurement of polymer melt extrapolated to 20° C.
Wu, 1974 ⁽⁴⁷⁾		$\gamma_{s}^{2} = 25.7 \text{ mJ/m}^{2}; 20^{\circ}\text{C}$	Direct measurement of polymer melt extrapolated to 20°C; Infinite molecular weight.
Wu, 1974 ⁽⁴⁷⁾	From polymer melt	$\gamma_{s}=23.9~mJ/m^{2}~(\gamma_{s}^{~d}=21.8,~\gamma_{s}^{~p}=2.1);~20^{\circ}C$	Direct measurement of polymer melt extrapolated to 20°C; polarity calculated from interfacial tension with PE by

sulfochromic acid, rinsed with distilled water, and dried with

Good, 1960 ⁽³¹⁾ Good, 1960 ⁽³¹⁾ Good, 1964 ⁽¹⁶⁾ Lee, 1968 ⁽¹³¹⁾ Wu, 1968 ⁽¹⁸²⁾ Sewell, 1971 ⁽¹⁹³⁾ Sewell, 1971 ⁽¹⁹³⁾	Calculated Calculated Calculated Calculated Calculated Calculated Calculated	$\gamma_{s} = 27.8 \text{ mJ/m}^{2}; 20^{\circ}\text{C}$ $\gamma_{s} = 21.0 \text{ mJ/m}^{2}; 20^{\circ}\text{C}$ $\gamma_{s} = 24.0 \text{ mJ/m}^{2}; 20^{\circ}\text{C}$ $\gamma_{s} = 17 \text{ mJ/m}^{2}; \text{ no temp cited}$ $\gamma_{s} = 21 \text{ mJ/m}^{2}; 20^{\circ}\text{C}$ $\gamma_{s} = 15.8 \text{ mJ/m}^{2}; \text{ no temp cited}$ $\gamma_{e} = 14.7 \text{ mJ/m}^{2}; \text{ no temp cited}$	harmonic mean. Infinite molecular weight. Calculated from low-molecular weight liquid homologs. Estimated from molecular constants, using $u = 0$ debye. Estimated from molecular constants, using $u = 1.2$ debyes. Calculated from glass temperature of 223K. Calculated from molecular constitution. Calculated from parachor and cohesive energy. Calculated by least squares from cohesive energy and molar
Wu, 1974 ⁽⁴⁷⁾ Wu, 1974 ⁽⁴⁷⁾ Van Krevelen, 1976 ⁽⁸⁵⁾ Wu, 1979 ⁽⁴⁵⁾ Vargha-Butler, 1985 ⁽¹⁸⁰⁾	Calculated Calculated Calculated Calculated Calculated	$\gamma_{s} = 25.8 \text{ mJ/m}^{2}; 20^{\circ}\text{C}$ $\gamma_{s} = 25.9 \text{ mJ/m}^{2}; 20^{\circ}\text{C}$ $\gamma_{s} = 26 \text{ mJ/m}^{2}; no \text{ temp cited}$ $\gamma_{s} = 23.9 \text{ mJ/m}^{2}; 20^{\circ}\text{C}$ $\gamma_{s} = 20.0 \text{ mJ/m}^{2}; 23^{\circ}\text{C}$	volume. Calculated from free volume theory and molecular weight. Calculated from free volume theory and molecular weight. Calculated from parachor parameter. Calculated from liquid homologs. Infinite molecular weight. Calculated from sedimentation volume.
Owen, 1996 ⁽¹³⁶⁾ Grundke, 2000 ⁽²⁵⁶⁾ Grundke, 2000 ⁽²⁵⁶⁾	Calculated Calculated Other	$\gamma_s = 25.6 \text{ mJ/m}^2$; no temp cited $\theta_W^{Y} = 104^{\circ}$; no temp cited $\gamma_s = 20.4 \text{ mJ/m}^2$; no temp cited	Direct measurement of liquid surface tension extrapolated to infinite molecular weight. Calculated from capillary penetration into packed polymer powder. Determined by capillary penetration into packed polymer powder.

©2009 Diversified Enterprises